Details

Advanced Membrane Technology and Applications


Advanced Membrane Technology and Applications


1. Aufl.

von: Norman N Li, Anthony G. Fane, W. S. Winston Ho, Takeshi Matsuura

181,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 29.12.2008
ISBN/EAN: 9780470276273
Sprache: englisch
Anzahl Seiten: 1016

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Advanced membranes-from fundamentals and membrane chemistry to manufacturing and applications <p>A hands-on reference for practicing professionals, <i>Advanced Membrane Technology and Applications</i> covers the fundamental principles and theories of separation and purification by membranes, the important membrane processes and systems, and major industrial applications. It goes far beyond the basics to address the formulation and industrial manufacture of membranes and applications.</p> <p>This practical guide:</p> <ul> <li>Includes coverage of all the major types of membranes: ultrafiltration; microfiltration; nanofiltration; reverse osmosis (including the recent high-flux and low-pressure membranes and anti-fouling membranes); membranes for gas separations; and membranes for fuel cell uses</li> <li>Addresses six major topics: membranes and applications in water and wastewater; membranes for biotechnology and chemical/biomedical applications; gas separations; membrane contractors and reactors; environmental and energy applications; and membrane materials and characterization</li> <li>Includes discussions of important strategic issues and the future of membrane technology</li> </ul> With chapters contributed by leading experts in their specific areas and a practical focus, this is the definitive reference for professionals in industrial manufacturing and separations and research and development; practitioners in the manufacture and applications of membranes; scientists in water treatment, pharmaceutical, food, and fuel cell processing industries; process engineers; and others. It is also an excellent resource for researchers in industry and academia and graduate students taking courses in separations and membranes and related fields.
PREFACE xv <p>ABOUT THE EDITORS xvii</p> <p>CONTRIBUTORS xix</p> <p><b>PART I MEMBRANES AND APPLICATIONS IN WATER AND WASTEWATER 1</b></p> <p><b>1. Thin-Film Composite Membranes for Reverse Osmosis 3</b><br /> <i>Tadahiro Uemura and Masahiro Henmi</i></p> <p>1.1 Introduction 3</p> <p>1.2 Application of RO Membranes 3</p> <p>1.3 Major Progress in RO Membranes 4</p> <p>1.4 Trends in RO Membrane Technology 6</p> <p>1.5 Reverse Osmosis/Biofouling Protection 13</p> <p>1.6 Low-Fouling RO Membrane for Wastewater Reclamation 14</p> <p>1.7 Chlorine Tolerance of Cross-Linked Aromatic Polyamide Membrane 17</p> <p><b>2. Cellulose Triacetate Membranes for Reverse Osmosis 21</b><br /> <i>A. Kumano and N. Fujiwara</i></p> <p>2.1 Introduction 21</p> <p>2.2 History of Cellulose Acetate Membrane 21</p> <p>2.3 Toyobo RO Module for Seawater Desalination 22</p> <p>2.4 Actual Performance of Toyobo RO Module for Seawater Desalination 28</p> <p>2.5 Most Recent RO Module of Cellulose Triacetate 35</p> <p>2.6 Conclusion 43</p> <p><b>3. Seawater Desalination 47</b><br /> <i>Nikolay Voutchkov and Raphael Semiat</i></p> <p>3.1 Introduction 47</p> <p>3.2 Seawater Desalination Plant Configuration 50</p> <p>3.3 Water Production Costs 82</p> <p>3.4 Future Trends 84</p> <p>3.5 Conclusion 85</p> <p><b>4. Seawater Desalination by Ultralow-Energy Reverse Osmosis 87</b><br /> <i>R. L. Truby</i></p> <p>4.1 Introduction 87</p> <p>4.2 SWRO Energy Reduction Using Energy Recovery Technology 88</p> <p>4.3 SWRO Energy Optimization 95</p> <p>4.4 Affordable Desalination Collaboration (ADC) 96</p> <p>4.5 Conclusion 99</p> <p><b>5. Microfiltration and Ultrafiltration 101</b><br /> <i>N. Kubota, T. Hashimoto, and Y. Mori</i></p> <p>5.1 Introduction 101</p> <p>5.2 Recent Trends and Progress in MF/UF Technology 104</p> <p>5.3 Future Prospects 127</p> <p><b>6. Water Treatment by Microfiltration and Ultrafiltration 131</b><br /> <i>M. D. Kennedy, J. Kamanyi, S. G. Salinas Rodrı´guez, N. H. Lee, J. C. Schippers, and G. Amy</i></p> <p>6.1 Introduction 131</p> <p>6.2 Materials, Module Configurations, and Manufacturers 133</p> <p>6.3 Microfiltration/Ultrafiltration Pretreatment 142</p> <p>6.4 Membrane Applications 146</p> <p>6.5 Membrane Fouling and Cleaning 149</p> <p>6.6 Integrated Membrane Systems (MF or UF þ RO or NF) 160</p> <p>6.7 Backwash Water Reuse, Treatment, and Disposal 164</p> <p><b>7. Water Reclamation and Desalination by Membranes 171</b><br /> <i>Pierre Cote, Mingang Liu, and Steven Siverns</i></p> <p>7.1 Introduction 171</p> <p>7.2 Water Reclamation and Seawater Desalination 172</p> <p>7.3 Cost Estimation 173</p> <p>7.4 Process Options for Water Reclamation 174</p> <p>7.5 Cost of Water Reclamation 177</p> <p>7.6 Process Options for Desalination 181</p> <p>7.7 Cost of Desalination 181</p> <p>7.8 Water Reuse versus Desalination 185</p> <p>7.9 Conclusions 186</p> <p><b>8. Chitosan Membranes with Nanoparticles for Remediation of Chlorinated Organics 189</b><br /> <i>Yit-Hong Tee and Dibakar Bhattacharyya</i></p> <p>8.1 Introduction 189</p> <p>8.2 Experimental Section 191</p> <p>8.3 Results and Discussions 197</p> <p>8.4 Conclusions 212</p> <p><b>9. Membrane Bioreactors for Wastewater Treatment 217</b><br /> <i>P. Cornel and S. Krause</i></p> <p>9.1 Introduction 217</p> <p>9.2 Principle of the Membrane Bioreactor Process 217</p> <p>9.3 MBR Design Considerations 230</p> <p>9.4 Applications and Cost 233</p> <p>9.5 Conclusions and Summary 235</p> <p><b>10. Submerged Membranes 239</b><br /> <i>Anthony G. Fane</i></p> <p>10.1 Introduction 239</p> <p>10.2 Modes of Operation of Submerged Membranes 241</p> <p>10.3 Submerged Membrane Module Geometries 246</p> <p>10.4 Bubbling and Hydrodynamic Considerations 253</p> <p>10.5 Practical Aspects 262</p> <p>10.6 Applications 267</p> <p>10.7 Conclusions 268</p> <p><b>11. Nanofiltration 271</b><br /> <i>Bart Van der Bruggen and Jeroen Geens</i></p> <p>11.1 Introduction 271</p> <p>11.2 Process Principles 272</p> <p>11.3 Application of Nanofiltration for Production of Drinking Water and Process Water 276</p> <p>11.4 Wastewater Polishing and Water Reuse 280</p> <p>11.5 Other Applications 283</p> <p>11.6 Solvent-Resistant Nanofiltration 284</p> <p>11.7 Conclusions 287</p> <p><b>12. Membrane Distillation 297</b><br /> <i>Mohamed Khayet</i></p> <p>12.1 Introduction to Membrane Distillation 297</p> <p>12.2 Membrane Distillation Membranes and Modules 305</p> <p>12.3 Membrane Distillation Membrane Characterization Techniques 320</p> <p>12.4 Transport Mechanisms in MD: Temperature Polarization, Concentration Polarization, and Theoretical Models 331</p> <p>12.5 Membrane Distillation Applications 341</p> <p>12.6 Long-Term MD Performance and Membrane Fouling in MD 355</p> <p>12.7 Hybrid MD Systems 356</p> <p>12.8 Concluding Remarks and Future Directions in MD 357</p> <p><b>13. Ultrapure Water by Membranes 371</b><br /> <i>Avijit Dey</i></p> <p>13.1 Introduction 371</p> <p>13.2 Integrated Membrane Technology in UPW Systems 377</p> <p><b>PART II MEMBRANES FOR BIOTECHNOLOGY AND CHEMICAL</b><b>/</b><b>BIOMEDICAL APPLICATIONS 407</b></p> <p><b>14. Tissue Engineering with Membranes 409</b><br /> <i>Zhanfeng Cui</i></p> <p>14.1 Introduction 409</p> <p>14.2 Hollow-Fiber Membrane Bioreactors for Three-Dimensional Tissue Culture 412</p> <p>14.3 Micromembrane Probes for Tissue Engineering Monitoring 420</p> <p>14.4 Future Opportunities 427</p> <p>14.5 Summary 429</p> <p><b>15. Biopharmaceutical Separations by Ultrafiltration 435</b><br /> <i>Raja Ghosh</i></p> <p>15.1 Introduction 435</p> <p>15.2 Ultrafiltration: An Overview 436</p> <p>15.3 Basic Working Principles of Ultrafiltration 437</p> <p>15.4 Ultrafiltration Membranes and Devices 438</p> <p>15.5 Ultrafiltration Processes 446</p> <p>15.6 Conclusion 449</p> <p><b>16. Nanofiltration in Organic Solvents 451</b><br /> <i>P. Silva, L. G. Peeva, and A. G. Livingston</i></p> <p>16.1 Organic Solvent Nanofiltration Membranes 451</p> <p>16.2 OSN Transport Mechanisms—Theoretical Background 458</p> <p>16.3 Applications of Organic Solvent Nanofiltration 461</p> <p><b>17. Pervaporation 469</b><br /> <i>Fakhir U. Baig</i></p> <p>17.1 Introduction 469</p> <p>17.2 Applications of AZEO SEP and VOC SEP 471</p> <p>17.3 Computer Simulation of Module Performance 475</p> <p>17.4 Permeation and Separation Model in Hollow-Fiber Membrane Module 481</p> <p>17.5 Conclusion 487</p> <p><b>18. Biomedical Applications of Membranes 489</b><br /> <i>G. Catapano and J. Vienken</i></p> <p>18.1 Introduction 489</p> <p>18.2 Membrane Therapeutic Treatments 490</p> <p>18.3 Medical Membrane Properties 496</p> <p>18.4 Medical Membrane Materials 501</p> <p>18.5 Biocompatibility of Membrane-Based Therapeutic Treatments 508</p> <p>18.6 Conclusions 511</p> <p><b>19. Hemodialysis Membranes 519</b><br /> <i>Norma J. Ofsthun, Sujatha Karoor, and Mitsuru Suzuki</i></p> <p>19.1 Introduction 519</p> <p>19.2 Transport Requirements 521</p> <p>19.3 Other Requirements 525</p> <p>19.4 Membrane Materials, Spinning Technology, and Structure 527</p> <p>19.5 Dialyzer Design and Performance 530</p> <p>19.6 Current Market Trends 533</p> <p>19.7 Future Directions 533</p> <p>19.8 Conclusions 536</p> <p><b>20. Tangential-Flow Filtration for Virus Capture 541</b><br /> <i>S. Ranil Wickramasinghe</i></p> <p>20.1 Introduction 541</p> <p>20.2 Tangential-Flow Filtration 543</p> <p>20.3 Tangential-Flow Filtration for Virus Capture 545</p> <p>20.4 Tangential-Flow Filtration for Virus Clearance 550</p> <p>20.5 Conclusions 552</p> <p><b>PART III GAS SEPARATIONS 557</b></p> <p><b>21. Vapor and Gas Separation by Membranes 559</b><br /> <i>Richard W. Baker</i></p> <p>21.1 Introduction to Membranes and Modules 559</p> <p>21.2 Membrane Process Design 563</p> <p>21.3 Applications 567</p> <p>21.4 Conclusions 577</p> <p>21.5 Glossary 577</p> <p><b>22. Gas Separation by Polyimide Membranes 581</b><br /> <i>Yoji Kase</i></p> <p>22.1 Introduction 581</p> <p>22.2 Permeability and Chemical Structure of Polyimides 582</p> <p>22.3 Manufacture of Asymmetric Membrane 587</p> <p>22.4 Membrane Module 588</p> <p>22.5 Applications of Polyimide Gas Separation Membranes 589</p> <p><b>23. Gas Separation by Carbon Membranes 599</b><br /> <i>P. Jason Williams and William J. Koros</i></p> <p>23.1 Introduction 599</p> <p>23.2 Structure of Carbon Membranes 599</p> <p>23.3 Transport in Carbon Membranes 601</p> <p>23.4 Formation of Carbon Membranes 604</p> <p>23.5 Current Separation Performance 616</p> <p>23.6 Production of CMS Modules 620</p> <p>23.7 Challenges and Disadvantages of CMS Membranes 622</p> <p>23.8 Direction of Carbon Membrane Development 626</p> <p><b>24. Polymeric Membrane Materials and Potential Use in Gas Separation 633</b><br /> <i>Ho Bum Park and Young Moo Lee</i></p> <p>24.1 Introduction 633</p> <p>24.2 Basic Principles of Gas Separation in Polymer Membranes 635</p> <p>24.3 Limitations of Gas Separations Using Polymer Membranes 643</p> <p>24.4 Polymer Membrane Materials 646</p> <p>24.5 Membrane Gas Separation Applications and Conclusions 659</p> <p><b>25. Hydrogen Separation Membranes 671</b><br /> <i>Yi Hua Ma</i></p> <p>25.1 Introduction 671</p> <p>25.2 Porous Nonmetallic Membranes for Hydrogen Separations 672</p> <p>25.3 High-Temperature Hydrogen Separation Membranes 674</p> <p>25.4 Concluding Remarks 680</p> <p><b>PART IV MEMBRANE CONTACTORS AND REACTORS 685</b></p> <p><b>26. Membrane Contactors 687</b><br /> <i>Kamalesh K. Sirkar</i></p> <p>26.1 Introduction 687</p> <p>26.2 Membrane-Based Contacting of Two Fluid Phases 690</p> <p>26.3 Membrane-Based Solid–Fluid Contacting 696</p> <p>26.4 Two Immobilized Phase Interfaces 697</p> <p>26.5 Dispersive Contacting in a Membrane Contactor 699</p> <p>26.6 Concluding Remarks 700</p> <p><b>27. Membrane Reactors 703</b><br /> <i>Enrico Drioli and Enrica Fontananova</i></p> <p>27.1 State-of-the-Art On Catalytic Membrane Reactors 703</p> <p>27.2 Advanced Oxidation Processes for Wastewater Treatments 704</p> <p>27.3 Selective Oxidations 710</p> <p>27.4 Biocatalytic Membrane Reactors 712</p> <p>27.5 Catalytic Crystals 712</p> <p>27.6 Inorganic Membrane Reactors 713</p> <p>27.7 Microreactors 713</p> <p>27.8 Conclusions 714</p> <p><b>PART V ENVIRONMENTAL AND ENERGY APPLICATIONS 719</b></p> <p><b>28. Facilitated Transport Membranes for Environmental, Energy, and Biochemical Applications 721</b><br /> <i>Jian Zou, Jin Huang, and W. S. Winston Ho</i></p> <p>28.1 Introduction 721</p> <p>28.2 Supported Liquid Membranes with Strip Dispersion 729</p> <p>28.3 Carbon-Dioxide-Selective Membranes 737</p> <p>28.4 Conclusions 747</p> <p><b>29. Fuel Cell Membranes 755</b><br /> <i>Peter N. Pintauro and Ryszard Wycisk</i></p> <p>29.1 Introduction to Fuel Cells 755</p> <p>29.2 Background on Fuel Cell Membranes 759</p> <p>29.3 Recent Work on New Fuel Cell Membranes 764</p> <p>29.4 Conclusions 779</p> <p><b>PART VI MEMBRANE MATERIALS AND CHARACTERIZATION 787</b></p> <p><b>30. Recent Progress in Mixed-Matrix Membranes 789</b><br /> <i>Chunqing Liu, Santi Kulprathipanja, Alexis M. W. Hillock, Shabbir Husain, and William J. Koros</i></p> <p>30.1 Introduction 789</p> <p>30.2 Recent Progress in Mixed-Matrix Membranes 794</p> <p>30.3 Summary and Future Opportunities 809</p> <p><b>31. Fabrication of Hollow-Fiber Membranes by Phase Inversion 821</b><br /> <i>Tai-Shung Neal Chung</i></p> <p>31.1 Introduction 821</p> <p>31.2 Basic Understanding 822</p> <p>31.3 Recent Progresses on Single-Layer Asymmetric Hollow-Fiber Membranes 825</p> <p>31.4 Dual-Layer Hollow Fibers 831</p> <p>31.5 Concluding Remarks 835</p> <p><b>32. Membrane Surface Characterization 841</b><br /> <i>M. Kallioinen and M. Nystrom</i></p> <p>32.1 Introduction 841</p> <p>32.2 Characterization of the Chemical Structure of a Membrane 842</p> <p>32.3 Characterization of Membrane Hydrophilicity 852</p> <p>32.4 Characterization of Membrane Charge 855</p> <p>32.5 Characterization of Membrane Morphology 859</p> <p>32.6 Conclusions 867</p> <p><b>33. Membrane Characterization by Ultrasonic Time-Domain Reflectometry 879</b><br /> <i>William B. Krantz and Alan R. Greenberg</i></p> <p>33.1 Introduction 879</p> <p>33.2 Principle of UTDR Measurement 880</p> <p>33.3 Characterization of Inorganic Membrane Fouling 882</p> <p>33.4 Characterization of Membrane Biofouling 885</p> <p>33.5 Characterization of Membrane Compaction 886</p> <p>33.6 Characterization of Membrane Formation 889</p> <p>33.7 Characterization of Membrane Morphology 891</p> <p>33.8 Summary and Recommendations 894</p> <p><b>34. Microstructural Optimization of Thin Supported Inorganic Membranes for Gas and Water Purification 899</b><br /> <i>M. L. Mottern, J. Y. Shi, K. Shqau, D. Yu, and Henk Verweij</i></p> <p>34.1 Introduction 899</p> <p>34.2 Morphology, Porosity, and Defects 902</p> <p>34.3 Optimization of Supported Membrane Structures 908</p> <p>34.4 Synthesis and Manufacturing 917</p> <p>34.5 Characterization 918</p> <p>34.6 Conclusions 923</p> <p><b>35. Structure/</b><b>Property Characteristics of Polar Rubbery Membranes for Carbon Dioxide Removal 929</b><br /> <i>Victor A. Kusuma, Benny D. Freeman, Miguel Jose-Yacaman, Haiqing Lin, Sumod Kalakkunnath, and Douglass S. Kalika</i><br /> </p> <p>35.1 Introduction and Background 929</p> <p>35.2 Theory and Experiment 931</p> <p>35.3 Results and Discussion 937</p> <p>35.4 Conclusions 950</p> <p><b>Index 955</b></p>
<b>Norman N. Li, PhD</b>, is the President of NL Chemical Technology, Inc., and a member of the National Academy of Engineering. Dr. Li holds forty-five patents, has edited twenty books, and has received many honors, including the 2000 Perkin Medal presented by the Society of Chemical Industry American Section. <p><b>Anthony G. Fane, PhD</b>, is Director of the Singapore Membrane Technology Centre at NanyangTechnological University, Singapore. He is a Fellow of the Australian Academy of Technological Sciences and Engineering.</p> <p><b>W. S. Winston Ho, PhD</b>, has been University Scholar Professor of Chemical Engineering at The Ohio State University. He holds more than fifty U.S. patents in separation processes and has won several awards, including the 2007 Clarence G. Gerhold Award from the American Institute of Chemical Engineers.</p> <p><b>Takeshi Matsuura, PhD</b>, is a Professor of Chemical Engineering at University of Ottawa, Canada. He has published more than 300 papers in refereed journals, authored or coauthored three books, and edited four books.</p>
<b>Advanced membranes—from fundamentals and membrane chemistry to manufacturing and applications</b> <p>A hands-on reference for practicing professionals, Advanced <i>Membrane Technology and Applications</i> covers the fundamental principles and theories of separation and purification by membranes, the important membrane processes and systems, and major industrial applications. It goes far beyond the basics to address the formulation and industrial manufacture of membranes and applications.</p> <p>This practical guide:</p> <ul> <li> <p>Includes coverage of all the major types of membranes: ultrafiltration; microfiltration; nanofiltration; reverse osmosis (including the recent high-flux and low-pressure membranes and anti-fouling membranes); membranes for gas separations; and membranes for fuel cell uses</p> </li> <li> <p>Addresses six major topics: membranes and applications in water and wastewater; membranes for biotechnology and chemical/biomedical applications; gas separations; membrane contractors and reactors; environmental and energy applications; and membrane materials and characterization</p> </li> <li> <p>Includes discussions of important strategic issues and the future of membrane technology</p> </li> </ul> <p>With chapters contributed by leading experts in their specific areas and a practical focus, this is the definitive reference for professionals in industrial manufacturing and separations and research and development; practitioners in the manufacture and applications of membranes; scientists in water treatment, pharmaceutical, food, and fuel cell processing industries; process engineers; and others. It is also an excellent resource for researchers in industry and academia and graduate students taking courses in separations and membranes and related fields.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €