Details

Insect Biodiversity


Insect Biodiversity

Science and Society, Volume 2
1. Aufl.

von: Robert G. Foottit, Peter H. Adler

108,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 11.04.2018
ISBN/EAN: 9781118945599
Sprache: englisch
Anzahl Seiten: 1024

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Volume Two of the new guide to the study of biodiversity in insects</b></p> <p>Volume Two of <i>Insect Biodiversity: Science and Society</i> presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives.</p> <p>Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity.</p> <p>This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text:</p> <ul> <li>Offers the most up-to-date information on the important topic of insect biodiversity</li> <li>Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change</li> <li>With its companion Volume I, presents current information on the biodiversity of all insect orders</li> <li>Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems</li> <li>Includes scientific approaches and methods for the study of insect biodiversity</li> </ul> <p>The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.</p>
<p>List of Contributors xxiii</p> <p>Foreword xxix</p> <p>Preface, Volume II xxxiii</p> <p>Acknowledgments xxxv</p> <p><b>1 Introduction – A Brief History of Revolutions in the Study of Insect Biodiversity 1<br /></b><i>Peter H. Adler and Robert G. Foottit</i></p> <p>1.1 Discovery 1</p> <p>1.2 Conceptual Development 5</p> <p>1.3 Information Management 6</p> <p>1.4 Conclusions 7</p> <p>Acknowledgments 8</p> <p>References 8</p> <p><b>Part I Habitats and Regions 13</b></p> <p><b>2 Insect Biodiversity in the Arctic 15<br /></b><i>Ian D. Hodkinson</i></p> <p>2.1 Documenting Biodiversity – Traditional Taxonomy Versus DNA Barcoding 17</p> <p>2.2 Insect Species Diversity in the Arctic 18</p> <p>2.2.1 Composition of the Arctic Insect Fauna 18</p> <p>2.2.2 Species Richness Trends Along Latitudinal Gradients 25</p> <p>2.2.3 Geographical and Regional Variations in Species Richness 27</p> <p>2.2.4 Diversity Oases Within the Arctic 28</p> <p>2.3 Historical Insect Biodiversity in the Arctic – the Time Perspective 29</p> <p>2.3.1 Nunataks and Glacial Refugia as Generators of Biodiversity 30</p> <p>2.3.2 Endemism 31</p> <p>2.4 Biodiversity on the Landscape Scale 32</p> <p>2.4.1 Variation in Biodiversity on a Landscape Scale 32</p> <p>2.4.2 Local Effects on Biodiversity – Predation and Natural Disturbance 34</p> <p>2.5 Important Characteristics of Arctic Insect Biodiversity 35</p> <p>2.5.1 Specialist Versus Generalist Species 35</p> <p>2.5.2 Life‐History Adaptation 35</p> <p>2.5.3 Genetic Diversity Within Species and Groups 36</p> <p>2.5.4 Reproductive Variation and Parthenogenesis 36</p> <p>2.5.5 A Diversity of Adaptations for Maximizing Heat Absorption 37</p> <p>2.6 Cold Tolerance – a Diversity of Adaptations 38</p> <p>2.6.1 Brachyptery and Wing Polymorphism 39</p> <p>2.7 Dispersal, Immigration, and Biodiversity 39</p> <p>2.8 Pollinator Networks and Pollinator Biodiversity 40</p> <p>2.9 A Biodiversity Paradise for Parasites? 41</p> <p>2.10 Biodiversity and the Changing Arctic Climate 42</p> <p>References 44</p> <p><b>3 Insect Biodiversity in Indochina: A Window into the Riches of the Oriental Region 59<br /></b><i>Seunghwan Lee and Ram Keshari Duwal</i></p> <p>3.1 Physical Geography and Climate 62</p> <p>3.2 Features of Insect Biodiversity in the Lower Mekong Subregion 62</p> <p>3.2.1 Blattodea 70</p> <p>3.2.2 Coleoptera 70</p> <p>3.2.3 Dermaptera 71</p> <p>3.2.4 Diptera 72</p> <p>3.2.5 Embiodea 72</p> <p>3.2.6 Ephemeroptera 72</p> <p>3.2.7 Hemiptera 72</p> <p>3.2.8 Hymenoptera 72</p> <p>3.2.9 “Isoptera” 72</p> <p>3.2.10 Lepidoptera 72</p> <p>3.2.11 Mantodea 73</p> <p>3.2.12 Mecoptera 73</p> <p>3.2.13 Megaloptera 73</p> <p>3.2.14 Microcoryphia and Zygentoma 73</p> <p>3.2.15 Neuroptera 73</p> <p>3.2.16 Notoptera (Grylloblattodea and Mantophasmatodea) 73</p> <p>3.2.17 Odonata 73</p> <p>3.2.18 Orthoptera 73</p> <p>3.2.19 Phasmatodea 73</p> <p>3.2.20 Phthiraptera 73</p> <p>3.2.21 Plecoptera 74</p> <p>3.2.22 Psocoptera 74</p> <p>3.2.23 Raphidioptera 74</p> <p>3.2.24 Siphonaptera 74</p> <p>3.2.25 Strepsiptera 74</p> <p>3.2.26 Thysanoptera 74</p> <p>3.2.27 Trichoptera 74</p> <p>3.2.28 Zoraptera 74</p> <p>3.3 Insect Biodiversity and Society in Indochina 74</p> <p>3.3.1 Entomophagy in the Lower Mekong Subregion 74</p> <p>3.3.2 Research Initiatives 76</p> <p>3.4 Conclusions 77</p> <p>Acknowledgments 78</p> <p>References 78</p> <p><b>4 Biodiversity of Arthropods on Islands 81<br /></b><i>Rosemary G. Gillespie and Kipling Will</i></p> <p>4.1 What is an Island? 81</p> <p>4.1.1 History of the Island 82</p> <p>4.1.2 Degree of Isolation 84</p> <p>4.1.3 Area of the Island 84</p> <p>4.1.4 Age of the Island 85</p> <p>4.2 Ecological Attributes of Islands 85</p> <p>4.2.1 Species Diversity on Islands 85</p> <p>4.2.2 Island Colonization 86</p> <p>4.2.3 Factors Facilitating Establishment 86</p> <p>4.2.4 Niche Preemption 86</p> <p>4.2.5 Ecological Release 87</p> <p>4.2.6 Networks of Ecological Interactions 87</p> <p>4.3 Evolution on Islands 87</p> <p>4.3.1 Anagenesis 87</p> <p>4.3.2 Cladogenesis 87</p> <p>4.3.3 Adaptive Radiation 88</p> <p>4.3.4 Isolation, Hybridization, and Admixture 88</p> <p>4.3.5 Parallel Evolution and Convergence 89</p> <p>4.4 Evolution in Other Insular Environments 89</p> <p>4.4.1 Mountaintops – Sky Islands 89</p> <p>4.4.2 Caves 89</p> <p>4.4.3 Desert Dunes and Salt Lakes 89</p> <p>4.4.4 Habitat Fragments 90</p> <p>4.5 Characteristics of Island Biodiversity 90</p> <p>4.5.1 Disharmony 90</p> <p>4.5.2 Endemism 91</p> <p>4.5.3 Loss of Dispersal Ability and Flightlessness 91</p> <p>4.5.4 Innovations 91</p> <p>4.5.5 Size 92</p> <p>4.5.6 Reproductive Shifts 92</p> <p>4.6 Conservation 92</p> <p>4.6.1 Taxonomic Impediments 93</p> <p>4.6.2 Restricted Ranges and Small Population Sizes 93</p> <p>4.6.3 Abiotic Factors 93</p> <p>4.6.4 Invasive Species 94</p> <p>4.7 Conclusion 94</p> <p>References 94</p> <p><b>5 Beneficial Insects in Agriculture: Enhancement of Biodiversity and Ecosystem Services 105<br /></b><i>Matthew S. Jones and William E. Snyder</i></p> <p>5.1 Components of Biodiversity: Species Richness, Species Evenness, and Species Identity 106</p> <p>5.2 Why Does Insect Biodiversity Matter to Agriculture? 106</p> <p>5.2.1 Complementarity 107</p> <p>5.2.1.1 Temporal Complementarity 107</p> <p>5.2.1.2 Spatial Complementarity 108</p> <p>5.2.1.3 Behavioral Complementarity 109</p> <p>5.2.2 Identity Effects in Pollinator, Predator, and Detritivore Communities 110</p> <p>5.2.3 Disruptive Species Interactions in Diverse Communities 111</p> <p>5.3 Degradation of Biodiversity Through Agricultural Intensification, and Its Reversal 112</p> <p>5.4 Restoring Biodiversity to Agroecosystems 112</p> <p>5.4.1 Restoring Key Resources 112</p> <p>5.4.2 Optimizing Use of Pesticides 113</p> <p>5.4.3 Diversifying Farming Landscapes at Larger Scales 113</p> <p>5.5 Conclusions and Recommendations 115</p> <p>5.5.1 Clarify Mechanisms Leading to Biodiversity Effects 115</p> <p>5.5.2 Consider Biodiversity Effects That Span Multiple Ecosystem Services 115</p> <p>5.5.3 Better Link Management Practices to Beneficial Biodiversity Effects 115</p> <p>5.5.4 Rank the Relative Importance of Habitat Loss Versus Agrochemical Use 116</p> <p>5.5.5 Elucidate Strategies That Facilitate Transition from Current Agricultural Production Practices to Those That Are Sustainable and Provide Improved Ecosystem</p> <p>Services 116</p> <p>5.6 Summary 116</p> <p>Acknowledgments 117</p> <p>References 117</p> <p><b>6 Insects in Caves 123<br /></b><i>David C. Culver and Tanja Pipan</i></p> <p>6.1 The Story of Leptodirus hochenwartii 123</p> <p>6.2 The Variety of Subterranean Spaces 124</p> <p>6.2.1 Overview 124</p> <p>6.2.2 Caves 125</p> <p>6.2.3 Soil and Interstitial Habitats 126</p> <p>6.2.4 Shallow Subterranean Habitats 127</p> <p>6.2.4.1 Epikarst 128</p> <p>6.2.4.2 Milieu Souterrain Superficiel 128</p> <p>6.2.4.3 Calcrete Aquifers 128</p> <p>6.2.4.4 Unifying Features of Shallow Subterranean Habitats 130</p> <p>6.3 Ecological Roles of Insects in Caves 133</p> <p>6.3.1 Relative Importance of Subterranean Habitats in the Ecology of Different Insects 133</p> <p>6.3.2 Trophic Roles 134</p> <p>6.4 Morphological and Life‐History Adaptations of Insects to Subterranean Life 134</p> <p>6.5 Probable Modes of Successful Colonization of Subterranean Space 138</p> <p>6.5.1 Initial Colonization 140</p> <p>6.5.2 Successful Colonization 140</p> <p>6.5.3 Allopatric Versus Parapatric Speciation 141</p> <p>6.5.4 Subterranean Dispersal 142</p> <p>6.6 Taxonomic and Geographic Patterns of Subterranean Insect Biodiversity 142</p> <p>6.6.1 Geographic Patterns 142</p> <p>6.6.2 Taxonomic Review of Troglobiotic Insects 143</p> <p>6.6.2.1 Collembola 144</p> <p>6.6.2.2 Diplura 146</p> <p>6.6.2.3 Coleoptera 146</p> <p>6.6.2.4 Fulgoromorpha 147</p> <p>6.7 Human Utility and Protection of Cave Insects 147</p> <p>References 147</p> <p><b>Part II Taxa 153</b></p> <p><b>7 Biodiversity of the Thysanurans (Microcoryphia and Zygentoma) 155<br /></b><i>Luis F. Mendes</i></p> <p>7.1 Paleontological Data 159</p> <p>7.2 Parasitism 167</p> <p>7.2.1 Unicellular Parasites 167</p> <p>7.2.2 Nematoda 167</p> <p>7.2.3 Acarids 167</p> <p>7.2.4 Strepsiptera 167</p> <p>7.2.5 Fungi 167</p> <p>7.3 Predation 168</p> <p>7.4 Order Microcoryphia (= Archaeognatha) 168</p> <p>7.4.1 Characterization 168</p> <p>7.4.2 Bionomics 172</p> <p>7.4.3 Taxonomy 173</p> <p>7.4.4 Identification Key for Families, Subfamilies, and Paleoforms of Microcoryphia 174</p> <p>7.5 Order Zygentoma (= Thysanura Sensu Stricto) 175</p> <p>7.5.1 Characterization 175</p> <p>7.5.2 Bionomics 179</p> <p>7.5.3 Taxonomy 180</p> <p>7.5.4 Identification Key for Families and Subfamilies of Zygentoma 181</p> <p>7.6 Genetic Studies of Thysanurans 183</p> <p>7.7 Thysanurans and Humans 184</p> <p>7.8 Geographic Distribution of the Thysanurans 185</p> <p>References 187</p> <p><b>8 Biodiversity of Zoraptera and Their Little‐Known Biology 199<br /></b><i>Jae C. Choe</i></p> <p>8.1 Morphology 201</p> <p>8.2 Life History and Ecology 204</p> <p>8.3 Reproduction 208</p> <p>8.4 Phylogenetic Position – “The Zoraptera Problem” 210</p> <p>8.5 Conclusion 211</p> <p>Acknowledgments 212</p> <p>References 212</p> <p><b>9 Biodiversity of Embiodea 219<br /></b><i>Janice S. Edgerly</i></p> <p>9.1 Diversity in Habitat and Silk 223</p> <p>9.2 The Promise of Silk‐Like Biomaterials and Emerging Lessons from Webspinners 228</p> <p>9.3 Social Behavior 229</p> <p>9.4 Families of Embiodea 231</p> <p>9.4.1 Andesembiidae 231</p> <p>9.4.2 Anisembiidae 232</p> <p>9.4.3 Archembiidae 233</p> <p>9.4.4 Australembiidae 234</p> <p>9.4.5 Clothodidae 234</p> <p>9.4.6 Embiidae 235</p> <p>9.4.7 Embonychidae 236</p> <p>9.4.8 Notoligotomidae 236</p> <p>9.4.9 Oligotomidae 236</p> <p>9.4.10 Paedembiidae 238</p> <p>9.4.11 Ptilocerembiidae 238</p> <p>9.4.12 Scelembiidae 238</p> <p>9.4.13 Teratembiidae 239</p> <p>9.5 Webspinners of the Fossil Record 239</p> <p>9.6 Conclusion 239</p> <p>References 240</p> <p><b>10 Biodiversity of Orthoptera 245<br /></b><i>Hojun Song</i></p> <p>10.1 Taxonomic Classification and Phylogeny 245</p> <p>10.2 Diversity and Distribution 246</p> <p>10.3 Morphological and Biological Diversity 250</p> <p>10.4 Societal Importance 253</p> <p>10.5 Overview of Taxa 254</p> <p>10.5.1 Suborder Ensifera 254</p> <p>10.5.1.1 Superfamily Grylloidea 255</p> <p>10.5.1.2 Superfamily Gryllotalpoidea 255</p> <p>10.5.1.3 Superfamily Schizodactyloidea 259</p> <p>10.5.1.4 Superfamily Rhaphidophoroidea 260</p> <p>10.5.1.5 Superfamily Hagloidea 260</p> <p>10.5.1.6 Superfamily Stenopelmatoidea 260</p> <p>10.5.1.7 Superfamily Tettigonioidea 261</p> <p>10.5.2 Suborder Caelifera 262</p> <p>10.5.2.1 Superfamily Tridactyloidea 263</p> <p>10.5.2.2 Superfamily Tetrigoidea 263</p> <p>10.5.2.3 Superfamily Eumastacoidea 265</p> <p>10.5.2.4 Superfamily Proscopioidea 266</p> <p>10.5.3.5 Superfamily Tanaoceroidea 266</p> <p>10.5.3.6 Superfamily Trigonopterygoidea 267</p> <p>10.5.3.7 Superfamily Pneumoroidea 267</p> <p>10.5.3.8 Superfamily Pyrgomorphoidea 267</p> <p>10.5.3.9 Superfamily Acridoidea 268</p> <p>Acknowledgments 271</p> <p>References 271</p> <p><b>11 Biodiversity of Phasmatodea 281<br /></b><i>Sven Bradler and Thomas R. Buckley</i></p> <p>11.1 Phasmatodean Phylogeny 286</p> <p>11.2 Overview of Taxa 288</p> <p>11.2.1 Timema 289</p> <p>11.2.2 Agathemera 290</p> <p>11.2.3 Heteronemiinae 290</p> <p>11.2.4 Aschiphasmatinae 290</p> <p>11.2.5 Phylliinae – The True Leaf Insects 291</p> <p>11.2.6 Heteropteryginae 292</p> <p>11.2.7 Diapheromerinae 293</p> <p>11.2.8 Pseudophasmatinae 294</p> <p>11.2.9 Palophinae 294</p> <p>11.2.10 The African Clade 295</p> <p>11.2.11 Gratidiini 295</p> <p>11.2.12 Clitumnini 296</p> <p>11.2.13 Medaurini 296</p> <p>11.2.14 Pharnaciini 296</p> <p>11.2.15 Cladomorphinae 296</p> <p>11.2.16 Stephanacridini 297</p> <p>11.2.17 Lanceocercata – The “Marsupials” Among the Phasmatodea 297</p> <p>11.2.18 Lonchodinae 299</p> <p>11.2.19 Necrosciinae 300</p> <p>11.3 The Phasmatodean Fossil Record 300</p> <p>11.4 Phasmatodea as Research Tools 302</p> <p>11.5 Importance to Human Society 304</p> <p>References 304</p> <p><b>12 Biodiversity of Dermaptera 315<br /></b><i>Fabian Haas</i></p> <p>12.1 Epizoic Dermaptera 315</p> <p>12.2 Structure and Function 318</p> <p>12.3 Locomotion 319</p> <p>12.4 Distribution 319</p> <p>12.5 Development and Reproduction 323</p> <p>12.6 Behavior 323</p> <p>12.6.1 Mating Behavior and Maternal Care 323</p> <p>12.6.2 Defense 324</p> <p>12.6.3 Feeding 324</p> <p>12.7 Parasitism and Symbiosis 324</p> <p>12.8 Fossils and Research History 324</p> <p>12.9 Overview of Taxa 325</p> <p>12.9.1 Lower Dermaptera 325</p> <p>12.9.2 Higher Dermaptera 326</p> <p>12.10 Societal and Scientific Importance 326</p> <p>12.10.1 Plant Pests, Biological Control Agents, and General Nuisances 326</p> <p>12.10.2 Medical, Veterinary, and Forensic Importance 326</p> <p>12.10.3 Invasive Alien Species 327</p> <p>12.10.4 Pollination and Other Ecological Services 327</p> <p>12.10.5 Research Tools 327</p> <p>12.10.6 Conservation – Vanishing Species 328</p> <p>12.10.7 Cultural Legacy 328</p> <p>Acknowledgments 328</p> <p>References 328</p> <p><b>13 Biodiversity of Grylloblattodea and Mantophasmatodea 335<br /></b><i>Monika J. B. Eberhard, Sean D. Schoville and Klaus‐Dieter Klass</i></p> <p>13.1 Grylloblattodea 336</p> <p>13.1.1 Morphology and Biology 336</p> <p>13.1.2 Overview of Taxa 341</p> <p>13.2 Mantophasmatodea 343</p> <p>13.2.1 Morphology and Biology 343</p> <p>13.2.2 Overview of Taxa 346</p> <p>13.2.2.1 Tanzaniophasmatidae 349</p> <p>13.2.2.2 Mantophasmatidae 349</p> <p>13.2.2.3 Tyrannophasma/Praedatophasma Clade 350</p> <p>13.2.2.4 Austrophasmatidae 350</p> <p>13.3 Fossil Record 351</p> <p>13.4 Conclusions 352</p> <p>Acknowledgments 353</p> <p>References 353</p> <p><b>14 Biodiversity of Blattodea – the Cockroaches and Termites 359<br /></b><i>Marie Djernæs</i></p> <p>14.1 Overview of Taxa 362</p> <p>14.1.1 Superfamily Corydioidea 363</p> <p>14.1.1.1 Family Corydiidae 363</p> <p>14.1.1.2 Family Nocticolidae 365</p> <p>14.1.2 Superfamily Blaberoidea 366</p> <p>14.1.2.1 Family Ectobiidae 366</p> <p>14.1.2.2 Family Blaberidae 368</p> <p>14.1.3 Superfamily Blattoidea 369</p> <p>14.1.3.1 Family Blattidae 369</p> <p>14.1.3.2 Family Lamproblattidae 370</p> <p>14.1.3.3 Family Tryonicidae 371</p> <p>14.1.3.4 Family Anaplectidae 371</p> <p>14.1.3.5 Family Cryptocercidae 371</p> <p>14.1.3.6 Termites 371</p> <p>14.2 Societal Importance 373</p> <p>14.2.1 Cockroaches and Science 373</p> <p>14.2.2 Cockroaches as Pests 374</p> <p>14.2.3 Cockroaches as Food, Feed, and Medicine 375</p> <p>14.2.4 Pet and Feeder Species 376</p> <p>14.2.5 Ecological Importance 376</p> <p>14.2.6 Conservation Status 377</p> <p>References 377</p> <p><b>15 Biodiversity of Mantodea 389<br /></b><i>Frank Wieland and Gavin J. Svenson</i></p> <p>15.1 Morphological and Biological Diversity 391</p> <p>15.2 Phylogeny and Classification 396</p> <p>15.2.1 Acanthopidae 396</p> <p>15.2.2 Acontistidae 396</p> <p>15.2.3 Amorphoscelidae 397</p> <p>15.2.4 Angelidae 398</p> <p>15.2.5 Chaeteessidae 398</p> <p>15.2.6 Coptopterygidae 399</p> <p>15.2.7 Empusidae 399</p> <p>15.2.8 Epaphroditidae 399</p> <p>15.2.9 Eremiaphilidae 400</p> <p>15.2.10 Galinthiadidae 400</p> <p>15.2.11 Hymenopodidae 401</p> <p>15.2.12 Iridopterygidae 401</p> <p>15.2.13 Liturgusidae 401</p> <p>15.2.14 Mantidae 402</p> <p>15.2.15 Mantoididae 402</p> <p>15.2.16 Metallyticidae 403</p> <p>15.2.17 Photinaidae 403</p> <p>15.2.18 Stenophyllidae 404</p> <p>15.2.19 Tarachodidae 404</p> <p>15.2.20 Thespidae 404</p> <p>15.2.21 Toxoderidae 405</p> <p>15.2.22 Incertae Sedis 405</p> <p>15.2.23 Suprafamilial Groups 405</p> <p>15.2.23.1 Acanthopoidea 405</p> <p>15.2.23.2 Artimantodea 405</p> <p>15.2.23.3 Cernomantodea 406</p> <p>15.2.23.4 Eumantodea 406</p> <p>15.2.23.5 Mantidea 406</p> <p>15.2.23.6 Mantoidea 406</p> <p>15.2.23.7 Mantomorpha 406</p> <p>15.2.23.8 Neomantodea 406</p> <p>15.3 Morphological Convergence and Ecomorphs 406</p> <p>15.4 Conclusions 407</p> <p>References 407</p> <p><b>16 Biodiversity of Psocoptera 417<br /></b><i>Edward L. Mockford</i></p> <p>16.1 Classification 418</p> <p>16.2 Overview of the Psocoptera 422</p> <p>16.2.1 Suborder Trogiomorpha 422</p> <p>16.2.1.1 Infraorder Atropetae 423</p> <p>16.2.1.2 Infraorder Psocatropetae 434</p> <p>16.2.1.3 Infraorder Prionoglaridetae 434</p> <p>16.2.2 Suborder Troctomorpha 434</p> <p>16.2.2.1 Infraorder Nanopsocetae 434</p> <p>16.2.2.2 Infraorder Amphientometae 436</p> <p>16.2.2.3 Superfamily Amphientomoidea 436</p> <p>16.2.2.4 Superfamily Electrentomoidea 437</p> <p>16.2.3 Suborder Psocomorpha 438</p> <p>16.2.3.1 Infraorder Archipsocetae 438</p> <p>16.2.3.2 Infraorder Caeciliusetae 438</p> <p>16.2.3.3 Infraorder Homilopsocidea 441</p> <p>16.2.3.4 Infraorder Philotarsetae 443</p> <p>16.2.3.5 Infraorder Epipsocetae 444</p> <p>16.2.3.6 Infraorder Psocetae 445</p> <p>16.3 Summary of Diversity of the Psocoptera and Predictions 447</p> <p>16.4 The Importance to Humans of Psocopteran Biodiversity 448</p> <p>Acknowledgments 448</p> <p>References 449</p> <p><b>17 Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera) 457<br /></b><i>Terry D. Galloway</i></p> <p>17.1 Phthiraptera – The Parasitic Lice 458</p> <p>17.2 Siphonaptera – The Fleas 465</p> <p>17.3 Medical and Veterinary Importance 474</p> <p>17.3.1 Lice 474</p> <p>17.3.2 Fleas 475</p> <p>17.4 Community Diversity of Lice and Fleas 477</p> <p>17.5 Conservation of Lice and Fleas 478</p> <p>Acknowledgments 479</p> <p>References 479</p> <p><b>18 Biodiversity of Thysanoptera 483<br /></b><i>Laurence A. Mound</i></p> <p>18.1 What Are Thrips? 484</p> <p>18.2 Family Diversity 484</p> <p>18.3 The Lives of Thrips 486</p> <p>18.4 Thrips Around the World 487</p> <p>18.5 Thrips as Research Targets 488</p> <p>18.6 Structural Diversity of Thrips 491</p> <p>18.7 Thrips as Pests 493</p> <p>18.8 Thrips and Human Life 494</p> <p>18.9 Thrips Information Sources 495</p> <p>References 496</p> <p><b>19 The Diversity of the True Hoppers (Hemiptera: Auchenorrhyncha) 501<br /></b><i>Charles R. Bartlett, Lewis L. Deitz, Dmitry A. Dmitriev, Allen F. Sanborn, Adeline Soulier‐Perkin<br /></i><i>and Matthew S. Wallace</i></p> <p>19.1 Overview of the Auchenorrhyncha 511</p> <p>19.1.1 Cicadomorpha 511</p> <p>19.1.1.1 Superfamily Cicadoidea – The Cicadas: Cicadidae and Tettigarctidae 516</p> <p>19.1.1.2 Superfamily Cercopoidea – Spittlebugs or Froghoppers 518</p> <p>19.1.1.3 Superfamily Membracoidea – Leafhoppers and Treehoppers 521</p> <p>19.1.2 Fulgoromorpha 530</p> <p>19.1.2.1 Superfamily Fulgoroidea – The Planthoppers 536</p> <p>19.2 Prospectus 549</p> <p>Acknowledgments 550</p> <p>References 551</p> <p><b>20 The Biodiversity of Sternorrhyncha: Scale Insects, Aphids, Psyllids, and Whiteflies 591<br /></b><i>Nate B. Hardy</i></p> <p>20.1 Sternorrhyncha and Society 591</p> <p>20.1.1 Economic Importance 591</p> <p>20.1.2 Ecological Importance 593</p> <p>20.1.3 Existential Importance 593</p> <p>20.2 Taxonomic Diversity of Sternorrhyncha 593</p> <p>20.2.1 Phylogeny and Classification 593</p> <p>20.2.1.1 Aphidoidea 594</p> <p>20.2.1.2 Aleyrodoidea 594</p> <p>20.2.1.3 Coccoidea 595</p> <p>20.2.1.4 Psylloidea 595</p> <p>20.3 Functional Diversity of Sternorrhyncha 596</p> <p>20.3.1 Trophic Diversity 596</p> <p>20.3.1.1 Phloem Feeding 596</p> <p>20.3.1.2 Not Phloem Feeding 596</p> <p>20.3.1.3 Trophic‐Breadth Variation 596</p> <p>20.3.2 Trophic Evolution 597</p> <p>20.3.3 Endosymbiosis 598</p> <p>20.3.4 Endosymbiont Diversity 598</p> <p>20.3.4.1 Endosymbiont Phylogenetic Diversity 598</p> <p>20.3.4.2 Endosymbiont Functional Diversity 602</p> <p>20.3.5 Endosymbiont Evolution 604</p> <p>20.3.5.1 Ecological Speciation 605</p> <p>20.3.5.2 Conflictual Speciation 606</p> <p>20.3.6 Life‐Cycle Diversity 607</p> <p>20.3.6.1 Aphid Soldiers and Eusocial Societies 608</p> <p>20.3.6.2 Life‐Cycle Evolution 609</p> <p>20.3.7 Genetic‐System Diversity 610</p> <p>20.3.7.1 Holocentric Chromosomes 610</p> <p>20.3.7.2 Sex Determination and Parthenogenesis 610</p> <p>20.3.7.3 Sex Ratio 611</p> <p>20.3.7.4 Supernumerary Chromosomes 613</p> <p>20.3.8 Genetic‐System Evolution 613</p> <p>20.3.8.1 What Sternorrhyncha Can Tell Us About the Evolution of Sex 613</p> <p>20.3.8.2 What Sternorrhyncha Can Tell Us About the Evolution of Genetic Systems 614</p> <p>20.4 Conclusions 615</p> <p>Acknowledgments 616</p> <p>References 616</p> <p><b>21 Biodiversity of the Neuropterida (Insecta: Neuroptera, Megaloptera, and Raphidioptera) 627<br /></b><i>John D. Oswald and Renato J. P. Machado</i></p> <p>21.1 Phylogeny 628</p> <p>21.2 Geological Age 628</p> <p>21.3 Metamorphosis and Life Stages 629</p> <p>21.3.1 Adults 629</p> <p>21.3.2 Eggs and Oviposition 630</p> <p>21.3.3 Larvae 632</p> <p>21.3.4 Pupae 633</p> <p>21.4 Biology 634</p> <p>21.5 Distribution 636</p> <p>21.6 Overview of Orders and Families 637</p> <p>21.6.1 Order Megaloptera 642</p> <p>21.6.1.1 Family Corydalidae 642</p> <p>21.6.1.2 Family Sialidae 642</p> <p>21.6.2 Order Neuroptera 644</p> <p>21.6.2.1 Family Ascalaphidae 644</p> <p>21.6.2.2 Family Berothidae 645</p> <p>21.6.2.3 Family Chrysopidae 645</p> <p>21.6.2.4 Family Coniopterygidae 647</p> <p>21.6.2.5 Family Dilaridae 647</p> <p>21.6.2.6 Family Hemerobiidae 649</p> <p>21.6.2.7 Family Ithonidae 649</p> <p>21.6.2.8 Family Mantispidae 650</p> <p>21.6.2.9 Family Myrmeleontidae 651</p> <p>21.6.2.10 Family Nemopteridae 652</p> <p>21.6.2.11 Family Nevrorthidae 653</p> <p>21.6.2.12 Family Nymphidae 653</p> <p>21.6.2.13 Family Osmylidae 655</p> <p>21.6.2.14 Family Psychopsidae 656</p> <p>21.6.2.15 Family Sisyridae 656</p> <p>21.6.3 Order Raphidioptera 657</p> <p>21.6.3.1 Family Inocelliidae 657</p> <p>21.6.3.2 Family Raphidiidae 657</p> <p>21.7 Societal Importance 658</p> <p>21.8 Scientific Importance 659</p> <p>Acknowledgments 660</p> <p>References 660</p> <p><b>22 Biodiversity of Strepsiptera 673<br /></b><i>Jeyaraney Kathirithamby</i></p> <p>22.1 Family Bahiaxenidae 678</p> <p>22.2 Suborder Mengenillidia 678</p> <p>22.2.1 Family Mengenillidae 678</p> <p>22.3 Suborder Stylopidia 681</p> <p>22.3.1 Family Corioxenidae 685</p> <p>22.4 Infraorder Stylopiformia 685</p> <p>22.4.1 Family Myrmecolacidae 685</p> <p>22.4.2 Family Lychnocolacidae 688</p> <p>22.4.3 Family Stylopidae 688</p> <p>22.4.4 Family Xenidae 689</p> <p>22.4.5 Family Bohartillidae 690</p> <p>22.4.6 Family Elenchidae 691</p> <p>22.4.7 Family Halictophagidae 692</p> <p>22.5 Conclusions 694</p> <p>Acknowledgments 694</p> <p>References 694</p> <p><b>23 Biodiversity of Mecoptera 705<br /></b><i>Wesley J. Bicha</i></p> <p>23.1 Suborder Nannomecoptera 706</p> <p>23.1.1 Family Nannochoristidae 706</p> <p>23.2 Suborder Pistillifera 707</p> <p>23.2.1 Infraorder Raptipedia 707</p> <p>23.2.1.1 Family Bittacidae 707</p> <p>23.2.2 Infraorder Opisthogonopora 709</p> <p>23.2.2.1 Group Boreomorpha 710</p> <p>23.2.2.2 Group Meropomorpha 711</p> <p>23.2.2.3 Group Panorpomorpha 711</p> <p>23.3 Societal Value of Mecoptera 715</p> <p>23.4 Scientific Value of Mecoptera 716</p> <p>23.5 Conclusion 716</p> <p>References 716</p> <p><b>Part III Perspectives 721</b></p> <p><b>24 The Fossil History of Insect Diversity 723<br /></b><i>Conrad C. Labandeira</i></p> <p>24.1 Importance of the Insect Fossil Record 724</p> <p>24.2 Types of Insect Diversity Past and Present 725</p> <p>24.2.1 Taxonomic and Taxic Diversity 725</p> <p>24.2.2 Ecological Diversity 730</p> <p>24.2.3 Biotal Diversity 733</p> <p>24.2.4 Plant–Insect Interactional Diversity 735</p> <p>24.2.4.1 Short‐Term Studies 746</p> <p>24.2.4.2 Intermediate‐Term Studies 746</p> <p>24.2.4.3 Long‐Term Studies 747</p> <p>24.2.4.4 Very Long‐Term Studies 747</p> <p>24.2.5 Morphological Diversity 749</p> <p>24.2.5.1 Size Disparity 753</p> <p>24.2.5.2 Structural Disparity 753</p> <p>24.2.5.3 Developmental Disparity 757</p> <p>24.2.5.4 Key Innovations 757</p> <p>24.2.6 Functional Diversity 760</p> <p>24.2.6.1 Functional Feeding Groups 760</p> <p>24.2.6.2 Lacustrine Ecospace Occupation 760</p> <p>24.2.6.3 Parasitoids and Trophic Roles in Food Webs 761</p> <p>24.2.7 Behavioral Diversity 761</p> <p>24.2.7.1 Sociality 762</p> <p>24.2.7.2 Mimicry and Warning Coloration 762</p> <p>24.2.7.3 Pollen‐Collection Strategies 763</p> <p>24.3 Biodiversity Changes Through Time 765</p> <p>24.3.1 Long‐Term Environmental Change 765</p> <p>24.3.1.1 Mid‐Paleozoic Beginnings of Terrestrial Ecosystems 765</p> <p>24.3.1.2 Initial Taxic Radiation of Insects 765</p> <p>24.3.1.3 Late Paleozoic Expansion of Herbivore Functional Feeding Groups 766</p> <p>24.3.1.4 Ecological and Behavioral Changes from the Mesozoic Lacustrine Revolution 767</p> <p>24.3.1.5 The Parasitoid Revolution 767</p> <p>24.3.1.6 Biodiversity Ramifications of the Early Expansion of Angiosperms 768</p> <p>24.3.1.7 Expansion of the Grassland Biome 769</p> <p>24.3.2 Short‐Term Environmental Change 770</p> <p>24.3.2.1 Permian–Triassic Global Crisis and Reductions in Biodiversity 770</p> <p>24.3.2.2 Cretaceous–Paleogene Global Crisis and Reductions in Biodiversity 771</p> <p>24.3.2.3 Biodiversity Realignments During the Paleocene–Eocene Thermal Maximum 772</p> <p>24.3.2.4 End‐Pleistocene Extinctions and Their Meaning for the Modern World 772</p> <p>24.4 Current Societal Aspects of Fossil Insect Biodiversity 773</p> <p>24.4.1 Human Interests and Biases 773</p> <p>24.4.2 Tools for Understanding Evolutionary and Ecological Diversification 773</p> <p>24.4.3 Detection of Insect‐Borne Diseases in the Fossil Record 774</p> <p>24.4.4 Insect Herbivory and Global Warming 775</p> <p>24.4.5 The Current Biodiversity Crisis 775</p> <p>24.5 Conclusions 776</p> <p>24.5.1 The Importance of the Insect Fossil Record for Understanding Insect Diversity 776</p> <p>24.5.2 The Five Fundamental Types of Diversity in the Insect Fossil Record 776</p> <p>24.5.3 The Effect of Long‐Term Environmental Change on Insect Diversity 776</p> <p>24.5.4 The Effect of Short‐Term Environmental Changes on Insect Diversity 776</p> <p>24.5.5 How Fossil Insect Biodiversity Affects Us All 776</p> <p>Acknowledgments 776</p> <p>References 777</p> <p><b>25 Phenotypes in Insect Biodiversity Research 789<br /></b><i>István Mikó and Andrew R. Deans</i></p> <p>25.1 Phenotype Data: Past and Present 789</p> <p>25.2 Phenotype Data: Present and Future 791</p> <p>25.2.1 Biological Ontologies 791</p> <p>25.2.2 Ontologies in Biodiversity Research 792</p> <p>25.2.2.1 Referencing a Glossary 792</p> <p>25.2.2.2 Generating Logically Consistent Phenotypes 793</p> <p>25.2.2.3 Reasoning Across Phenotype Data 794</p> <p>25.3 Challenges and Future Directions 795</p> <p>25.3.1 Social Challenges to “Standardization” 795</p> <p>25.3.2 Ontology Development Barriers 795</p> <p>25.3.3 Ontology Implementation Barriers 796</p> <p>25.3.4 Phenotype Complexity 796</p> <p>25.3.5 Communicating Primarily with Semantic Phenotypes 796</p> <p>25.3.6 No Clearinghouse for Phenotype Data 796</p> <p>25.3.7 Reasoning Challenges 797</p> <p>Acknowledgments 797</p> <p>References 797</p> <p><b>26 Global Change and Insect Biodiversity in Agroecosystems 801<br /></b><i>David R. Gillespie, Matthew J. W. Cock, Thibaud Decaëns, Philippa J. Gerard, Sandra D. Gillespie,</i></p> <p><i>Juan J. Jiménez and Owen O. Olfert</i></p> <p>26.1 Global Change 801</p> <p>26.2 Insect Biodiversity in Agriculture 803</p> <p>26.2.1 What Do We Mean By “Biodiversity”? 804</p> <p>26.3 Effects of Global Change on Biodiversity – What Do We Know? 805</p> <p>26.3.1 Crop Pests and Natural Enemies 805</p> <p>26.3.1.1 Distribution 805</p> <p>26.3.1.2 Community Composition 808</p> <p>26.3.1.3 Other Responses to Climate Change 810</p> <p>26.3.2 Soil Function and Topsoil Maintenance 812</p> <p>26.3.3 Implications of Global Change for Crop Pollination 814</p> <p>26.3.3.1 Evidence for Importance of Biodiversity for Pollination Service to Crops 814</p> <p>26.3.3.2 Expected Effects of Global Change on Pollinator Diversity – Consequences for Society 814</p> <p>26.4 Island Versus Continent Contrasts 815</p> <p>26.4.1 Impacts on Biodiversity of Insects in Island Agroecosystems 816</p> <p>26.5 Tropical Versus Temperate Issues 818</p> <p>26.5.1 Climate Tolerances in Tropical and Temperate Species 819</p> <p>26.6 Some Concluding Viewpoints 822</p> <p>References 823</p> <p><b>27 Digital Photography and the Democratization of Biodiversity Information 839<br /></b><i>Stephen A. Marshall</i></p> <p>27.1 The Digital Insect Collection 840</p> <p>27.2 Digital Images in Interactive Keys 844</p> <p>27.3 Digital Photography and Taxonomic Revisions 845</p> <p>27.4 Organization of Digital Insect Collections 848</p> <p>27.5 Conclusions 849</p> <p>References 849</p> <p><b>28 Bee (Hymenoptera: Apoidea: Anthophila) Diversity Through Time 851<br /></b><i>Sophie Cardinal</i></p> <p>28.1 Morphological Diversity 851</p> <p>28.2 Behavioral Diversity: Social, Nesting, and Floral Hosts 852</p> <p>28.3 Geographical Diversity 852</p> <p>28.4 Evolutionary History and Diversification 853</p> <p>28.5 Conclusions 863</p> <p>References 864</p> <p><b>29 Insect Biodiversity in Culture and Art 869<br /></b><i>Gene Kritsky and Jessee J. Smith</i></p> <p>29.1 Prehistory 870</p> <p>29.2 Insects in the Ancient World 871</p> <p>29.3 The Cult of Artemis: A Case Study 874</p> <p>29.4 Roman Insect Art 875</p> <p>29.5 Ancient China 876</p> <p>29.6 Religions of India 877</p> <p>29.7 Post‐Classical Era 877</p> <p>29.8 The Americas 880</p> <p>29.9 Modern History 882</p> <p>29.10 Japanese Art 884</p> <p>29.11 Language and Literature 886</p> <p>29.12 Insects in Music 889</p> <p>29.13 Insects in Cinema 891</p> <p>29.14 Akihabara Culture: Toys, Video Games, and Anime from Modern Japan 892</p> <p>29.15 Present and Future Trends in Cultural Entomology 894</p> <p>29.16 The Internet Age 895</p> <p>References 896</p> <p>Index of Arthropod Taxa Arranged by Order and Family 899</p> <p>Index of Arthropod Taxa Arranged Alphabetically 943</p> <p>Index of non‐Arthropod Taxa Arranged Alphabetically 975</p> <p>Subject Index 979</p>
<p><b>ROBERT G. FOOTTIT</b> is a research scientist specializing in the taxonomy of aphids and related groups, with the Canadian National Collection of Insects and Agriculture and Agri-Food Canada. His research interests include the use of morphological and molecular approaches in the study of aphid species and populations.</p> <p><b>PETER H. ADLER</b> is a professor of entomology at Clemson University, where he holds a teaching and research appointment, specializing in the behavior, ecology, genetics, and systematics of insects, particularly butterflies and medically important flies.</p>
<p><b>Volume Two of the new guide to the study of biodiversity in insects</b></p> <p>Volume Two of <i>Insect Biodiversity: Science and Society</i> presents an entirely new, companion volume of a comprehensive resource for the most current research on the influence insects have on humankind and on our endangered environment. With contributions from leading researchers and scholars on the topic, the text explores relevant topics including biodiversity in different habitats and regions, taxonomic groups, and perspectives.</p> <p>Volume Two offers coverage of insect biodiversity in regional settings, such as the Arctic and Asia, and in particular habitats including crops, caves, and islands. The authors also include information on historical, cultural, technical, and climatic perspectives of insect biodiversity.</p> <p>This book explores the wide variety of insect species and their evolutionary relationships. Case studies offer assessments on how insect biodiversity can help meet the needs of a rapidly expanding human population, and examine the consequences that an increased loss of insect species will have on the world. This important text:</p> <ul> <li>Offers the most up-to-date information on the important topic of insect biodiversity</li> <li>Explores vital topics such as the impact on insect biodiversity through habitat loss and degradation and climate change</li> <li>With its companion Volume I, presents current information on the biodiversity of all insect orders</li> <li>Contains reviews of insect biodiversity in culture and art, in the fossil record, and in agricultural systems</li> <li>Includes scientific approaches and methods for the study of insect biodiversity</li> </ul> <p>The book offers scientists, academics, professionals, and students a guide for a better understanding of the biology and ecology of insects, highlighting the need to sustainably manage ecosystems in an ever-changing global environment.</p>

Diese Produkte könnten Sie auch interessieren:

Bioinformatics and Computational Biology Solutions Using R and Bioconductor
Bioinformatics and Computational Biology Solutions Using R and Bioconductor
von: Robert Gentleman, Vincent Carey, Wolfgang Huber, Rafael Irizarry, Sandrine Dudoit
PDF ebook
213,99 €
A Computer Scientist's Guide to Cell Biology
A Computer Scientist's Guide to Cell Biology
von: William W. Cohen
PDF ebook
64,19 €
Chemical Signals in Vertebrates 11
Chemical Signals in Vertebrates 11
von: Jane Hurst, Robert J. Beynon, S. Craig Roberts, Tristram Wyatt
PDF ebook
234,33 €