Details

Interdisciplinary Mechatronics


Interdisciplinary Mechatronics

Engineering Science and Research Development
1. Aufl.

von: M. K. Habib, J. Paulo Davim

154,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 06.05.2013
ISBN/EAN: 9781118577073
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Mechatronics represents a unifying interdisciplinary and intelligent engineering science paradigm that features an interdisciplinary knowledge area and interactions in terms of the ways of work and thinking, practical experiences, and theoretical knowledge. Mechatronics successfully fuses (but is not limited to) mechanics, electrical, electronics, informatics and intelligent systems, intelligent control systems and advanced modeling, intelligent and autonomous robotic systems, optics, smart materials, actuators and biomedical and biomechanics, energy and sustainable development, systems engineering, artificial intelligence, intelligent computer control, computational intelligence, precision engineering and virtual modeling into a unified framework that enhances the design of products and manufacturing processes.<br /> <i>Interdisciplinary Mechatronics</i> concerns mastering a multitude of disciplines, technologies, and their interaction, whereas the science of mechatronics concerns the invention and development of new theories, models, concepts and tools in response to new needs evolving from interacting scientific disciplines. The book includes two sections, the first section includes chapters introducing research advances in mechatronics engineering, and the second section includes chapters that reflects the teaching approaches (theoretical, projects, and laboratories) and curriculum development for under- and postgraduate studies. Mechatronics engineering education focuses on producing engineers who can work in a high-technology environment, emphasize real-world hands-on experience, and engage in challenging problems and complex tasks with initiative, innovation and enthusiasm.<br /> <br /> Contents:<br /> <br /> 1. Interdisciplinary Mechatronics Engineering Science and the Evolution of Human Friendly and Adaptive Mechatronics, Maki K. Habib.<br /> 2. Micro-Nanomechatronics for Biological Cell Analysis and Assembly, Toshio Fukuda, Masahiro Nakajima, Masaru Takeuchi, Tao Yue and Hirotaka Tajima.<br /> 3. Biologically Inspired CPG-Based Locomotion Control System of a Biped Robot Using Nonlinear Oscillators with Phase Resetting, Shinya Aoi.<br /> 4. Modeling a Human’s Learning Processes toward Continuous Learning Support System, Tomohiro Yamaguchi, Kouki Takemori and Keiki Takadama.<br /> 5. PWM Waveform Generation Using Pulse-Type Hardware Neural Networks, Ken Saito, Minami Takato, Yoshifumi Sekine and Fumio Uchikoba.<br /> 6. Parallel Wrists: Limb Types, Singularities and New Perspectives, Raffaele Di Gregorio.<br /> 7. A Robot-Assisted Rehabilitation System – RehabRoby, Duygun Erol Barkana and Fatih Özkul.<br /> 8. MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation, Andrew Mcdaid, Yun Ho Tsoi and Shengquan Xie.<br /> 9. Performance Evaluation of a Probe Climber for Maintaining Wire Rope, Akihisa Tabata, Emiko Hara and Yoshio Aoki.<br /> 10. Fundamentals on the Use of Shape Memory Alloys in Soft Robotics, Matteo Cianchetti.<br /> 11. Tuned Modified Transpose Jacobian Control of Robotic Systems, S. A. A. Moosavian and M. Karimi.<br /> 12. Derivative-Free Nonlinear Kalman Filtering for PMSG Sensorless Control, Gerasimos Rigatos, Pierluigi Siano and Nikolaos Zervos.<br /> 13. Construction and Control of Parallel Robots, Moharam Habibnejad Korayem, Soleiman Manteghi and Hami Tourajizadeh.<br /> 14. A Localization System for Mobile Robot Using Scanning Laser and Ultrasonic Measurement, Kai Liu, Hongbo Li and Zengqi Sun.<br /> 15. Building of Open-Structure Wheel-Based Mobile Robotic Platform, Aleksandar Rodic and Ivan Stojkovic.<br /> 16. Design and Physical Implementation of Holonomous Mobile Robot–Holbos, Jasmin Velagic, Admir Kaknjo, Faruk Dautovic, Muhidin Hujdur and Nedim Osmic.<br /> 17. Advanced Artificial Vision and Mobile Devices for New Applications in Learning, Entertainment and Cultural Heritage Domains, Gian Luca Foresti, Niki Martinel, Christian Micheloni and Marco Vernier.<br /> 18. Application of Stereo Vision and ARM Processor for Motion Control, Moharam Habibnejad Korayem, Michal Irani and Saeed Rafee Nekoo.<br /> 19. Mechatronics as Science and Engineering – or Both, Balan Pillai and Vesa Salminen.<br /> 20. A Mechatronic Platform for Robotic Educational Activities, Ioannis Kostavelis, Evangelos Boukas, Lazaros Nalpantidis and Antonios Gasteratos.<br /> 21. The Importance of Practical Activities in the Formation of Mechatronic Engineers, Joao Carlos M. Carvalho and Vera Lúcia D.S. Franco<br /> <br /> </p> <p>About the Authors</p> <p>Maki K. Habib is Professor of Robotics and Mechatronics in the School of Science and Engineering, at the American University in Cairo, Egypt. He has been regional editor (Africa/Middle East,) for the International Journal of Mechatronics and Manufacturing Systems (IJMMS) since 2010. He is the recipient of academic awards and has published many articles and books.<br /> J. Paulo Davim is Aggregate Professor in the Department of Mechanical Engineering at the University of Aveiro, Portugal and is Head of MACTRIB (Machining and Tribology Research Group). His main research interests include manufacturing, materials and mechanical engineering.</p>
<p>Preface xvii</p> <p><b>Chapter 1. Interdisciplinary Mechatronics Engineering Science and the Evolution of Human Friendly and Adaptive Mechatronics  1</b><br /> <i>Maki K. HABIB</i></p> <p>1.1. Introduction 2</p> <p>1.2. Synergetic thinking, learning and innovation in mechatronics design 9</p> <p>1.3. Human adaptive and friendly mechatronics 11</p> <p>1.4. Conclusions 14</p> <p>1.5. Bibliography 15</p> <p><b>Chapter 2. Micro-Nanomechatronics for Biological Cell Analysis and Assembly 19</b><br /> <i>Toshio FUKUDA, Masahiro NAKAJIMA, Masaru TAKEUCHI, Tao YUE and Hirotaka TAJIMA</i></p> <p>2.1. Introduction of micro-nanomechatronics on biomedical fields 19</p> <p>2.2. Configuration of micro-nanomechatronics 21</p> <p>2.3. Micro-nanomechatronics for single cell analysis 25</p> <p>2.4. Semi-closed microchip for single cell analysis 28</p> <p>2.5. Biological cell assembly using photo-linkable resin based on the single cell analysis techniques 30</p> <p>2.6. Conclusion 33</p> <p>2.7. Acknowledgments 34</p> <p>2.8. Bibliography 34</p> <p><b>Chapter 3. Biologically Inspired CPG-Based Locomotion Control System of a Biped Robot Using Nonlinear Oscillators with Phase Resetting 37</b><br /> <i>Shinya AOI</i></p> <p>3.1. Introduction 37</p> <p>3.2. Locomotion control system using nonlinear oscillators 38</p> <p>3.3. Stability analysis using a simple biped robot model 41</p> <p>3.4. Experiment using biped robots 58</p> <p>3.5. Conclusion 64</p> <p>3.6. Acknowledgments 65</p> <p>3.7. Bibliography 65</p> <p><b>Chapter 4. Modeling a Human’s Learning Processes toward Continuous Learning Support System  69</b><br /> <i>Tomohiro YAMAGUCHI, Kouki TAKEMORI and Keiki TAKADAMA</i></p> <p>4.1. Introduction 70</p> <p>4.2. Designing the continuous learning by a maze model 76</p> <p>4.3. The layout design of mazes for the continuous learning task 82</p> <p>4.3.1. Overview of the continuous learning support system 82</p> <p>4.3.2. The layout design of mazes on the thinking level space 83</p> <p>4.4. Experiment 85</p> <p>4.5. Discussions 88</p> <p>4.5.1. The role of motivations to drive the continuous learning 88</p> <p>4.6. Conclusions 92</p> <p>4.7. Acknowledgments 93</p> <p>4.8. Bibliography 93</p> <p><b>Chapter 5. PWM Waveform Generation Using Pulse-Type Hardware Neural Networks  95</b><br /> <i>Ken SAITO, Minami TAKATO, Yoshifumi SEKINE and Fumio UCHIKOBA</i></p> <p>5.1. Introduction 96</p> <p>5.2. PWM servo motor 97</p> <p>5.3. Pulse-type hardware neuron model 99</p> <p>5.4. Pulse-type hardware neural networks 104</p> <p>5.5. Measurements of constructed discrete circuit 108</p> <p>5.6. Conclusion 109</p> <p>5.7. Acknowledgments 109</p> <p>5.8. Bibliography 110</p> <p><b>Chapter 6. Parallel Wrists: Limb Types, Singularities and New Perspectives 113</b><br /> <i>Raffaele DI GREGORIO</i></p> <p>6.1. Limb architectures and mobility analysis 113</p> <p>6.2. Singularities and performance indices 124</p> <p>6.3. New perspectives 139</p> <p>6.4. Bibliography 142</p> <p><b>Chapter 7. A Robot-Assisted Rehabilitation System – RehabRoby 145</b><br /> <i>Duygun EROL BARKANA and Fatih ÖZKUL</i></p> <p>7.1. Introduction 145</p> <p>7.2. Background 146</p> <p>7.3. Control architecture 149</p> <p>7.4. RehabRoby 150</p> <p>7.5. Controllers of RehabRoby 155</p> <p>7.6. Concluding remarks 158</p> <p>7.7. Acknowledgments 159</p> <p>7.8. Bibliography 159</p> <p><b>Chapter 8. MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation  163</b><br /> <i>Andrew MCDAID, Yun HO TSOI and Shengquan XIE</i></p> <p>8.1. Introduction 163</p> <p>8.2. Ankle rehabilitation robot 167</p> <p>8.2.1. Design requirements 168</p> <p>8.3. Actuator force control 176</p> <p>8.4. Experimental results 198</p> <p>8.5. Concluding remarks 204</p> <p>8.6. Bibliography 205</p> <p><b>Chapter 9. Performance Evaluation of a Probe Climber for Maintaining Wire Rope  209</b><br /> <i>Akihisa TABATA, Emiko HARA and Yoshio AOKI</i></p> <p>9.1. Introduction 209</p> <p>9.2. Optimize friction drive conditions using a prototype probe climber 210</p> <p>9.3. Impact of different surface friction materials for friction pulley made on elevation performance 213</p> <p>9.4. Damage detection test of elevator wire rope 216</p> <p>9.5. Damage detection through signal processing 218</p> <p>9.6. Integrity evaluation of wire rope through MFL strength 219</p> <p>9.7. Damage detection of wire rope using neural networks 224</p> <p>9.8. Conclusion 224</p> <p>9.9. Bibliography 225</p> <p><b>Chapter 10. Fundamentals on the Use of Shape Memory Alloys in Soft Robotics 227</b><br /> <i>Matteo CIANCHETTI</i></p> <p>10.1. Introduction 228</p> <p>10.2. Shape memory effect and superelastic effect 230</p> <p>10.3. SMA thermomechanical behavior 231</p> <p>10.4. SMA constitutive models 234</p> <p>10.5. Hints on SMA thermomechanical testing 235</p> <p>10.6. Design principles 237</p> <p>10.7. Fabrication methods 243</p> <p>10.8. Activation methods and control design 244</p> <p>10.9. Applications in Soft Robotics 248</p> <p>10.10. Conclusions 251</p> <p>10.11. Bibliography 252</p> <p><b>Chapter 11. Tuned Modified Transpose Jacobian Control of Robotic Systems 255</b><br /> <i>S. A. A. MOOSAVIAN and M. KARIMI</i></p> <p>11.1. Introduction 256</p> <p>11.2. TMTJ control law  257</p> <p>11.3. Obtained results and discussions 265</p> <p>11.3.1. Fixed base manipulator 265</p> <p>11.3.2. Mobile base manipulator 269</p> <p>11.4. Conclusions 272</p> <p>11.5. Bibliography 273</p> <p><b>Chapter 12. Derivative-Free Nonlinear Kalman Filtering for PMSG Sensorless Control  277</b><br /> <i>Gerasimos RIGATOS, Pierluigi SIANO and Nikolaos ZERVOS</i></p> <p>12.1. Introduction 277</p> <p>12.2. Dynamic model of the permanent magnet synchronous generator 279</p> <p>12.3. Lie algebra-based design of nonlinear state estimators 282</p> <p>12.4. Differential flatness for nonlinear dynamical systems 288</p> <p>12.5. Differential flatness of the PMSG 293</p> <p>12.6. Robust state estimation-based control of the PMSG 296</p> <p>12.7. Estimation of PMSG disturbance input with Kalman filtering 298</p> <p>12.8. Simulation experiments 302</p> <p>12.9. Conclusions 307</p> <p>12.10. Bibliography 308</p> <p><b>Chapter 13. Construction and Control of Parallel Robots 313</b><br /> <i>Moharam HABIBNEJAD KORAYEM, Soleiman MANTEGHI and Hami TOURAJIZADEH</i></p> <p>13.1. Introduction 313</p> <p>13.2. A parallel robot mechanism 315</p> <p>13.3. Actuators 324</p> <p>13.4. Sensors 328</p> <p>13.5. Data transfer protocol 342</p> <p>13.6. Graphical user interface (GUI) 347</p> <p>13.7. Result and verifications 357</p> <p>13.8. Conclusion 362</p> <p>13.9. Bibliography 364</p> <p><b>Chapter 14. A Localization System for Mobile Robot Using Scanning Laser and Ultrasonic Measurement 369</b><br /> <i>Kai LIU, Hongbo LI and Zengqi SUN</i></p> <p>14.1. Introduction 369</p> <p>14.2. System configuration 371</p> <p>14.3. Implementation 373</p> <p>14.4. Experimental results 377</p> <p>14.5. Conclusion 382</p> <p>14.6. Acknowledgments 383</p> <p>14.7. Bibliography 383</p> <p><b>Chapter 15. Building of Open-Structure Wheel-Based Mobile Robotic Platform 385</b><br /> <i>Aleksandar RODIÆ and Ivan STOJKOVIÆ</i></p> <p>15.1. Introduction 385</p> <p>15.2. State of the art 386</p> <p>15.3. Configuring of the experimental system 389</p> <p>15.4. Modeling and simulation of the system 394</p> <p>15.5. Motion planning and control 403</p> <p>15.6. Simulation and experimental testing 409</p> <p>15.7. Concluding remarks 416</p> <p>15.8. Acknowledgments 417</p> <p>15.9. Bibliography 417</p> <p>15.10. Appendix 421</p> <p><b>Chapter 16. Design and Physical Implementation of Holonomous Mobile Robot – Holbos 423</b><br /> <i>Jasmin VELAGIC, Admir KAKNJO, Faruk DAUTOVIC, Muhidin HUJDUR and Nedim OSMIC</i></p> <p>16.1. Introduction 423</p> <p>16.2. Locomotion of holonomous mobile robot 424</p> <p>16.3. Mechanical design 430</p> <p>16.4. Electrical design 431</p> <p>16.5. Results 444</p> <p>16.6. Conclusion 447</p> <p>16.7. Bibliography 448</p> <p><b>Chapter 17. Advanced Artificial Vision and Mobile Devices for New Applications in Learning, Entertainment and Cultural Heritage Domains  451</b><br /> <i>Gian Luca FORESTI, Niki MARTINEL, Christian MICHELONI and MARCO VERNIER</i></p> <p>17.1. Introduction 451</p> <p>17.2. Chapter contributions 455</p> <p>17.3. Mobile devices for education purposes 456</p> <p>17.4. Image processing supports HCI in museum application 461</p> <p>17.5. Back to the Future: a 3D image gallery 471</p> <p>17.6. Conclusions and future works 477</p> <p>17.7. Bibliography 477</p> <p><b>Chapter 18. Application of Stereo Vision and ARM Processor for Motion Control 483</b><br /> <i>Moharam HABIBNEJAD KORAYEM, Michal IRANI and Saeed RAFEE NEKOO</i></p> <p>18.1. Introduction 483</p> <p>18.2. Stereo vision 486</p> <p>18.3. Triangulation 487</p> <p>18.4. End-effector orientation 490</p> <p>18.5. Experimental setup and results 492</p> <p>18.6. Summary 497</p> <p>18.7. Bibliography 498</p> <p><b>Chapter 19. Mechatronics as Science and Engineering – or Both 501</b><br /> <i>Balan PILLAI and Vesa SALMINEN</i></p> <p>19.1. Introduction 501</p> <p>19.2. Theories and methods of design, planning and manufacturing 504</p> <p>19.3. Complexity versus complicatedness 506</p> <p>19.4. Benefits of fast product developments 513</p> <p>19.5. Nature of product development process 516</p> <p>19.6. Planning the timetable of a product design project 518</p> <p>19.7. Designing the product concept 520</p> <p>19.8. Enhancing conceptual design 520</p> <p>19.9. Interaction between the parts of the machine 523</p> <p>19.10. Effect of the strength of interaction between product parts and development speed 524</p> <p>19.11. Definition of product and service 527</p> <p>19.12. The case studies 529</p> <p>19.13. Networking systems and learning mechanism 531</p> <p>19.14. Model-based methodology: an implemented case 536</p> <p>19.15. Conclusions 540</p> <p>19.16. Bibliography 541</p> <p><b>Chapter 20. A Mechatronic Platform for Robotic Educational Activities  543</b><br /> <i>Ioannis KOSTAVELIS, Evangelos BOUKAS, Lazaros NALPANTIDIS and Antonios GASTERATOS</i></p> <p>20.1. Introduction 543</p> <p>20.2. System overview 545</p> <p>20.3. Educational activities 554</p> <p>20.4. Experiences from educational activities 561</p> <p>20.5. Conclusions 565</p> <p>20.6. Acknowledgments 565</p> <p>20.7. Bibliography 566</p> <p><b>Chapter 21. The Importance of Practical Activities in the Formation of Mechatronic Engineers 569</b><br /> <i>João Carlos M. CARVALHO and Vera Lúcia D.S. FRANCO</i></p> <p>21.1. Introduction 569</p> <p>21.2. Curricular and extracurricular practical activities 575</p> <p>21.3. Undergraduate course of Mechatronics Engineering at the Federal University of Uberlândia/Brazil 580</p> <p>21.4. Discussions 588</p> <p>21.5. Conclusions 590</p> <p>21.6. Bibliography 591</p> <p>List of Authors 593</p> <p>Index 599</p>
<p><strong>Maki K. Habib</strong> is Professor of Robotics and Mechatronics in the School of Science and Engineering, at The American University in Cairo, Egypt. He has been regional editor (Africa/Middle East) for the International Journal of Mechatronics and Manufacturing Systems (IJMMS) since 2010. He is the recipient of academic awards and has published many articles and books. <p><strong>J. Paulo Davim</strong> is Aggregate Professor in the Department of Mechanical Engineering at the University of Aveiro, Portugal and is Head of MACTRIB (Machining and Tribology Research Group). His main research interests include manufacturing, materials and mechanical engineering.

Diese Produkte könnten Sie auch interessieren:

Neutron Applications in Earth, Energy and Environmental Sciences
Neutron Applications in Earth, Energy and Environmental Sciences
von: Liyuan Liang, Romano Rinaldi, Helmut Schober
PDF ebook
149,79 €
Nanobioelectronics - for Electronics, Biology, and Medicine
Nanobioelectronics - for Electronics, Biology, and Medicine
von: Andreas Offenhäusser, Ross Rinaldi
PDF ebook
96,29 €
Autonomous Robots
Autonomous Robots
von: Farbod Fahimi
PDF ebook
117,69 €