Details

2D Functional Nanomaterials


2D Functional Nanomaterials

Synthesis, Characterization, and Applications
1. Aufl.

von: Ganesh S. Kamble

144,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 11.10.2021
ISBN/EAN: 9783527823949
Sprache: englisch
Anzahl Seiten: 448

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>2D Functional Nanomaterials</b> <p><b>Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications</b> <p>In <i>2D Functional Nanomaterials: Synthesis, Characterization, and Applications, </i> Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. <p>The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. <ul><li>Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives</li> <li>Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides</li> <li>Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors</li> <li>Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites</li></ul> <p>Perfect for materials scientists, inorganic chemists, and electronics engineers, <i>2D Functional Nanomaterials: Synthesis, Characterization, and Applications</i> is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.
<p>Foreword xvii</p> <p>Preface xxi</p> <p><b>1 Graphene Chemical Derivatives Synthesis and Applications: State-of-the-Art and Perspectives </b><b>1</b><br /> <i>Maxim K. Rabchinskii, Maksim V. Gudkov, and Dina Yu. Stolyarova</i></p> <p>1.1 Introduction 1</p> <p>1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration 3</p> <p>1.3 Graphene Oxide Reduction and Functionalization 6</p> <p>1.4 Applications of CMGs 13</p> <p>1.5 Concluding Remarks 15</p> <p>Acknowledgments 15</p> <p>References 16</p> <p><b>2 2D/2D Graphene Oxide-Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides </b><b>21</b><br /> <i>Paulmanickam Koilraj and Keiko Sasaki</i></p> <p>2.1 Introduction 21</p> <p>2.2 Synthesis of GO/LDH Composite 22</p> <p>2.2.1 Co-precipitation 22</p> <p>2.2.2 Hydrothermal Preparation 23</p> <p>2.2.3 Self-Assembly of LDH Nanosheets with GO Nanosheets 24</p> <p>2.3 Removal of Radionuclides 24</p> <p>2.3.1 U(VI) Removal 24</p> <p>2.3.2 Sorption of Eu(III) with the Presence of GO on LDH 25</p> <p>2.3.3 Co-remediation Anionic SeO<sub>4</sub><sup>2−</sup> and Cationic Sr<sup>2+</sup> 26</p> <p>2.4 Conclusion 29</p> <p>References 29</p> <p><b>3 2D Nanomaterials for Biomedical Applications </b><b>31</b><br /> <i>Poliraju Kalluru and Raviraj Vankayala</i></p> <p>3.1 Introduction 31</p> <p>3.1.1 Photothermal and Photodynamic Therapy 31</p> <p>3.1.2 Bioimaging and Drug/Gene Delivery 34</p> <p>3.1.3 Biosensors 37</p> <p>3.1.4 Antibacterial Activity 39</p> <p>3.1.5 Tissue Engineering and Regenerative Medicine 41</p> <p>3.2 Conclusions 43</p> <p>References 43</p> <p><b>4 Novel Two-Dimensional Nanomaterials for Next-Generation Photodetectors </b><b>47</b><br /> <i>Khurelbaatar Zagarzusem and Zumuukhorol Munkhsaikhan</i></p> <p>4.1 Introduction 47</p> <p>4.2 2D Materials for PDs 49</p> <p>4.2.1 Graphene 49</p> <p>4.2.2 TMDs (Transition Metal Dichalcogenides) 49</p> <p>4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) 50</p> <p>4.2.4 Xenes (Monoelemental 2D Materials) 50</p> <p>4.3 The Physical Mechanism Enabling Photodetection 50</p> <p>4.4 Characterization Parameters for Photodetectors 51</p> <p>4.4.1 Responsivity 51</p> <p>4.4.2 Detectivity 52</p> <p>4.4.3 External Quantum Efficiency 52</p> <p>4.4.4 Gain 52</p> <p>4.4.5 Response Time 52</p> <p>4.4.6 Noise Equivalent Power 52</p> <p>4.5 Synthesis Methods for 2D Materials 53</p> <p>4.5.1 Mechanical Exfoliation 53</p> <p>4.5.2 Liquid Exfoliation 53</p> <p>4.5.3 Chemical Vapor Deposition (CVD) 53</p> <p>4.6 Photodetectors Based on 2D Materials 55</p> <p>4.6.1 Photodetectors Based on Graphene 55</p> <p>4.6.2 Photodetectors Based on MoS2 55</p> <p>4.6.3 Photodetectors Based on BP 55</p> <p>4.7 Photodetectors Based on 2D Heterostructures 56</p> <p>4.8 Conclusions and Outlook 58</p> <p>References 58</p> <p><b>5 2D Nanomaterials for Cancer Therapy </b><b>63</b><br /> <i>Naresh Kuthala</i></p> <p>5.1 Introduction 63</p> <p>5.2 2D Nanomaterials for Cancer Therapy 64</p> <p>5.2.1 2D Nanomaterials for Combination PTT with PDT 64</p> <p>5.2.2 2D-Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) 68</p> <p>5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) 70</p> <p>5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) 73</p> <p>5.3 Summary and Future Perspectives 76</p> <p>References 76</p> <p><b>6 Graphene and Its Derivatives – Synthesis and Applications </b><b>81</b><br /> <i>Amer Al-Nafiey</i></p> <p>6.1 Introduction 81</p> <p>6.2 Graphite 81</p> <p>6.2.1 Define 81</p> <p>6.2.2 Synthetic Graphite 82</p> <p>6.2.3 Characterized and Properties of Graphite 82</p> <p>6.2.3.1 Structure 82</p> <p>6.2.4 Applications 84</p> <p>6.3 Graphene Oxide 84</p> <p>6.3.1 Define 84</p> <p>6.3.2 Synthetic of Graphene Oxide 84</p> <p>6.3.3 Characterized and Properties of Graphene Oxide 84</p> <p>6.3.3.1 Structure 84</p> <p>6.3.3.2 Properties of Graphene Oxide 87</p> <p>6.3.3.3 Applications of Graphene Oxide 88</p> <p>6.3.3.4 Few Examples 88</p> <p>6.4 Reduced Graphene Oxide 89</p> <p>6.4.1 Define 89</p> <p>6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide 89</p> <p>6.4.2.1 Thermal Reduction of GO 90</p> <p>6.4.2.2 Photocatalytic Method 94</p> <p>6.4.2.3 Electrochemical Method 95</p> <p>6.4.2.4 Other Methods 95</p> <p>6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide 95</p> <p>6.4.3.1 Structure 96</p> <p>6.4.3.2 Properties and Applications of Reduced Graphene Oxide 97</p> <p>6.5 Graphene 98</p> <p>6.5.1 Define 98</p> <p>6.5.2 Synthesis of Graphene 98</p> <p>6.5.2.1 Chemical Vapor Deposition (CVD) 101</p> <p>6.5.2.2 Epitaxial Growth 102</p> <p>6.5.2.3 Mechanical Exfoliation 104</p> <p>6.5.2.4 Chemical Reduction of Graphene Oxide (GO) 105</p> <p>6.5.3 Characterized, Structure, and Properties of Graphene 105</p> <p>6.5.3.1 Surface Properties 105</p> <p>6.5.3.2 Electronic Properties 105</p> <p>6.5.3.3 Optical Properties 106</p> <p>6.5.3.4 Mechanical Properties 107</p> <p>6.5.3.5 Thermal Properties 107</p> <p>6.5.3.6 Photocatalytic Properties 108</p> <p>6.5.3.7 Magnetic Properties 109</p> <p>6.5.3.8 Characterizations of Graphene 109</p> <p>6.5.3.9 Morphology (SEM, TEM, and AFM) 109</p> <p>6.5.3.10 Raman Spectroscopy 111</p> <p>6.5.3.11 X-ray Photoelectron Spectroscopy (XPS) 111</p> <p>6.5.3.12 UV–Visible Spectroscopy 112</p> <p>6.5.3.13 X-ray Diffraction (XRD) 114</p> <p>6.5.3.14 Thermogravimetric Analysis (TGA) 114</p> <p>6.5.3.15 FTIR Spectroscopy 115</p> <p>6.5.4 Application of Graphene 116</p> <p>References 116</p> <p><b>7 Recent Trends in Graphene – Latex Nanocomposites </b><b>125<br /> </b><i>Anand Krishnamoorthy</i></p> <p>7.1 Introduction 125</p> <p>7.2 Polymer Lattices – An Overview 125</p> <p>7.3 Graphene – Background 127</p> <p>7.4 Preparation and Functionalization of Graphene 128</p> <p>7.5 Graphene – Latex Nanocomposites: Preparation Properties and Applications 129</p> <p>7.6 Conclusions 137</p> <p>References 138</p> <p><b>8 Advanced Characterization and Techniques </b><b>141</b><br /> <i>Raja Murugesan</i></p> <p>8.1 Introduction 141</p> <p>8.2 Characterization Techniques 141</p> <p>8.2.1 Optical Techniques – Dynamic Light Scattering (DLS) 141</p> <p>8.2.2 Optical Spectroscopy 144</p> <p>8.2.3 NMR-Nuclear Magnetic Resonance Spectroscopy 145</p> <p>8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy 145</p> <p>8.2.5 X-Ray Photoelectron Spectroscopy (XPS) 146</p> <p>8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) 147</p> <p>8.2.6.1 Scanning Electron Microscopy (SEM) 147</p> <p>8.2.6.2 Transmission Electron Microscopy (TEM) 149</p> <p>8.2.6.3 Scanning Transmission Electron Microscopy (STEM) 150</p> <p>8.2.6.4 Scanning Tunneling Microscopy (STM) 151</p> <p>8.2.7 Atomic Force Microscopy (AFM) 151</p> <p>8.2.8 Kelvin Probe Force Microscopy (KPFM) 152</p> <p>8.2.9 X-Ray-Based Techniques 152</p> <p>References 154</p> <p><b>9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications </b><b>157</b><br /> <i>Mamta Chahar and Sarita Khaturia</i></p> <p>9.1 Introduction 157</p> <p>9.2 Types of 2D Nanomaterials 158</p> <p>9.3 Methods for the Synthesis of 2D Nanomaterials 160</p> <p>9.4 Mechanism of Cancer Theranostics 162</p> <p>9.5 Applications of 2D Nanomaterials 163</p> <p>9.6 Conclusion 163</p> <p>References 169</p> <p><b>10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories </b><b>175</b><br /> <i>Adnan Younis, Jawad Alsaei, Basma Al-Najar, Hacene Manaa, Pranay Rajan, El Hadi S. Sadki, Aicha Loucif, and Shama Sehar</i></p> <p>10.1 Introduction to 2D Materials 175</p> <p>10.2 Electronic Band Structure in 2D Materials 176</p> <p>10.3 Electronic Transport Properties of 2D Materials 178</p> <p>10.4 Two-Dimensional Materials in Field Effect Transistors 180</p> <p>10.4.1 Field Effect Transistors 180</p> <p>10.4.2 The Rise of 2D Materials Research in FETs 180</p> <p>10.4.3 Graphene-Based Field Effect Transistors 181</p> <p>10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors 183</p> <p>10.5 Two-Dimensional Materials as Nonvolatile Resistive Memories 184</p> <p>10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives 185</p> <p>10.5.2 Resistive Switching Memories in 2D Materials “Beyond” Graphene 187</p> <p>10.5.2.1 Solution-Processed MoS2-Based Resistive Memories 187</p> <p>10.5.2.2 Solution-Processed Black Phosphorous Nonvolatile Resistive Memories 188</p> <p>10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h-BN) 188</p> <p>10.6 Conclusions and Outlook 189</p> <p>References 190</p> <p><b>11 2D Advanced Functional Nanomaterials for Cancer Therapy </b><b>199</b><br /> <i>Raj Kumar, Naveen Bunekar, Sunil Dutt, Pulikanti G. Reddy, Abhishek K.</i><i> Gupta, Keshaw R. Aadil, Vivek K. Mishra, Shivendra Singh, and Chandrani Sarkar</i></p> <p>11.1 Introduction 199</p> <p>11.2 2D Nanomaterials Classification 202</p> <p>11.2.1 Graphene Family Nanomaterials 202</p> <p>11.2.2 Transition Metal Dichalcogenides (TMDs) 203</p> <p>11.2.3 Layered Double Hydroxides (LDHs) 205</p> <p>11.2.4 Carbonitrides (MXenes) 206</p> <p>11.2.5 Black Phosphorus (BP) 206</p> <p>11.3 Cancer Therapy 208</p> <p>11.3.1 Mechanism of Action in Cancer Therapy 212</p> <p>11.3.1.1 Mode of Action of 2D Nanomaterials 212</p> <p>11.3.2 Photodynamic Therapy for Cancer Cell Treatment 215</p> <p>11.3.2.1 Mechanism of Photodynamic Therapy 215</p> <p>11.3.2.2 2D Nanomaterials as Photosensitizer for PDT 217</p> <p>11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy 217</p> <p>11.3.3 2D Nanomaterials-Cancer Detection/Diagnosis/Theragnostic 218</p> <p>11.4 Tissue Engineering 219</p> <p>11.5 Conclusion 220</p> <p>Acknowledgment 221</p> <p>References 221</p> <p><b>12 Synthesis of Nanostructured Materials Via Green and Sol–Gel Methods: A Review </b><b>235</b><br /> <i>Ankit S. Bartwal, Rahul Thakur, Sumit Ringwal, and Satish C. Sati</i></p> <p>12.1 Introduction 235</p> <p>12.2 Methods Used in Nanostructured Synthesis 236</p> <p>12.2.1 Green Method of Nanoparticles Synthesis 236</p> <p>12.2.2 Sol–Gel Method of Nanoparticles Synthesis 236</p> <p>12.2.3 Green Method of Nanocomposites Synthesis 241</p> <p>12.2.4 Sol–Gel Method of Nanocomposites 241</p> <p>12.3 Discussion 241</p> <p>12.4 Conclusion 244</p> <p>References 244</p> <p><b>13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles </b><b>249</b><br /> <i>Gurpreet Kour, Ankit S. Bartwal, and Satish C. Sati</i></p> <p>13.1 Introduction 249</p> <p>13.2 Materials and Methods 250</p> <p>13.2.1 Chemicals 250</p> <p>13.2.2 Methodology 250</p> <p>13.2.3 Antimicrobial Activity 251</p> <p>13.3 Results and Discussion 251</p> <p>13.3.1 Characterization of Synthesized Zinc-Oxide Nanoparticles (ZnONPs) 251</p> <p>13.3.1.1 XRD Analysis 251</p> <p>13.3.1.2 FT-IR Analysis 252</p> <p>13.3.1.3 SEM Analysis 254</p> <p>13.3.1.4 TEM Analysis 254</p> <p>13.3.2 Antibacterial Activity 254</p> <p>13.4 Conclusion 255</p> <p>Acknowledgments 255</p> <p>References 255</p> <p><b>14 Piezoelectric Properties of Na<sub>1−x</sub>K<sub>x</sub>NbO<sub>3</sub> near x = 0.475, Morphotropic Phase Region </b><b>257</b> <i>Surendra Singh and Narayan S. Panwar</i></p> <p>14.1 Introduction 257</p> <p>14.2 Experimental Procedure 259</p> <p>14.3 Results and Discussion 260</p> <p>References 262</p> <p><b>15 Synthesis and Characterization of SDC Nano-Powder for IT-SOFC Applications </b><b>265</b><br /> <i>Bharati B. Patil</i></p> <p>15.1 Introduction 265</p> <p>15.1.1 Solid Oxide Fuel Cells (SOFCs) 265</p> <p>15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs) 266</p> <p>15.1.3 Why Samarium-Doped Ceria (SDC) Material? 266</p> <p>15.1.4 Various Synthesis Methods for SDC 267</p> <p>15.1.5 Why SDC Synthesis by Combustion Process? 268</p> <p>15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)? 268</p> <p>15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells 269</p> <p>15.1.7.1 Applications of SDC as SOFC Electrolyte 269</p> <p>15.1.7.2 Applications of SDC to Make Composite Anode 269</p> <p>15.1.7.3 Applications of SDC to Make Composite Cathode 270</p> <p>15.1.7.4 Applications of SDC as an Interlayer 270</p> <p>15.1.7.5 Applications of SDC as an Additional Anode Layer 270</p> <p>15.2 Experimental 270</p> <p>15.2.1 Powder Synthesis 270</p> <p>15.2.2 Powder Characterization 271</p> <p>15.3 Results and Discussion 272</p> <p>15.3.1 TG-DTG Study 272</p> <p>15.3.2 XRD Analysis 272</p> <p>15.3.3 Powder Microstructure 276</p> <p>15.3.3.1 SEM Analysis 276</p> <p>15.3.3.2 TEM Analysis 277</p> <p>15.3.3.3 EDAX Analysis 277</p> <p>15.3.3.4 BET Analysis 278</p> <p>15.3.4 Electrical Properties 278</p> <p>15.4 Conclusions 281</p> <p>Acknowledgments 281</p> <p>References 282</p> <p><b>16 Introduction of 2D Nanomaterials and Their Photocatalytic Applications </b><b>285</b><br /> <i>Kallappa Ramchandra Sanadi</i></p> <p>16.1 Introduction 285</p> <p>16.2 Definitions of Nanomaterials 286</p> <p>16.3 History of Nanotechnology 286</p> <p>16.3.1 Top-down Approach 286</p> <p>16.3.2 Bottom-up Approach 286</p> <p>16.4 Classification of Nanomaterials 286</p> <p>16.4.1 Zero-Dimensional (0-D) 287</p> <p>16.4.2 One-Dimensional (1-D) 287</p> <p>16.4.3 Three-Dimensional (3-D) 287</p> <p>16.4.4 Two-Dimensional (2-D) 287</p> <p>16.4.4.1 Synthetic Methods 288</p> <p>16.5 Characterization Techniques for 2D Nanomaterials 290</p> <p>16.6 Applications of 2D Nanomaterials 291</p> <p>16.7 Photocatalytic Application 291</p> <p>16.7.1 Why Photocatalyst? 291</p> <p>16.7.2 Brief History of Photocatalysis 292</p> <p>16.7.3 Principles of Heterogeneous Photocatalysis 292</p> <p>16.7.4 Photocatalytic Study of 2D Nanomaterials 293</p> <p>16.7.5 Challenges Behind 2D Nanomaterials as a Photocatalyst 294</p> <p>References 294</p> <p><b>17 Graphene and Its Analogous 2D-Layered Materials for Flexible Persistent Energy Storage Devices in Consumer Electronics </b><b>297</b><br /> <i>Himadri Tanaya Das, K. Hariprasad, and T. E. Balaji</i></p> <p>17.1 Introduction 297</p> <p>17.2 Brief Sketch of the Types of SC and Its Working Mechanism 298</p> <p>17.3 Evolution of Electrode Materials for Flexible Supercapacitors 300</p> <p>17.4 Developing Graphene Electrodes with Different Nanocomposites 304</p> <p>17.4.1 Other Carbon-Based Nanomaterials with Graphene 304</p> <p>17.4.2 Using Organic Composites with Graphene 306</p> <p>17.4.3 Conductive Polymer with Graphene 306</p> <p>17.4.4 Combining Graphene with Other Metal Oxides/Hydroxides 308</p> <p>17.4.5 Combining Graphene with Other 2D-Layered Materials 308</p> <p>17.5 Novel Technologies to Develop Flexible Graphene-Based Supercapacitors 310</p> <p>17.6 Conclusion 311</p> <p>17.7 Future Aspects 313</p> <p>References 313</p> <p><b>18 2D Dichalcogenides </b><b>317<br /> </b><i>Ram S. Singh, Varun Rai, and Arun K. Singh</i></p> <p>18.1 Introduction 317</p> <p>18.1.1 What Are 2D Dichalcogenides? 317</p> <p>18.1.2 Properties 318</p> <p>18.2 Methods of Synthesis 321</p> <p>18.2.1 Top-Down Method 321</p> <p>18.2.1.1 Micromechanical Exfoliation 321</p> <p>18.2.1.2 Liquid Exfoliation 322</p> <p>18.2.1.3 Chemical Intercalation and Exfoliation 322</p> <p>18.2.1.4 Electrochemical Exfoliation 322</p> <p>18.2.1.5 Thinning by Thermal Annealing, Laser, and Chemical Etching 323</p> <p>18.2.2 Bottom-Up Method 323</p> <p>18.2.2.1 Chemical Vapor Deposition 323</p> <p>18.2.2.2 Solvo-Thermal 324</p> <p>18.2.2.3 Molecular Beam Epitaxy 325</p> <p>18.3 Modification of Properties 325</p> <p>18.4 Applications 327</p> <p>18.4.1 Optoelectronics 327</p> <p>18.4.2 Sensors 329</p> <p>18.4.3 Spintronics 329</p> <p>18.4.4 Photocatalysis 329</p> <p>18.4.5 Biomedical Applications 330</p> <p>18.5 Conclusion 330</p> <p>Acknowledgment 330</p> <p>References 331</p> <p><b>19 Recent Trends on Graphene-Based Metal Oxide Nanocomposites Toward Photoelectrochemical Water Splitting Application </b><b>335<br /> </b><i>Kashinath Lellala and Mouni Roy</i></p> <p>19.1 Introduction 335</p> <p>19.1.1 Basic of Photo-Anode/Cathode 335</p> <p>19.1.2 Properties of PEC 336</p> <p>19.1.3 Importance of Catalyst/Electrode 336</p> <p>19.1.4 Fundamental Concept of Photo-Electrochemical Water Splitting 337</p> <p>19.1.4.1 Light–Catalyst Interaction 337</p> <p>19.1.4.2 Electron–Hole Pair 337</p> <p>19.1.4.3 Carrier Transportation-Separation 338</p> <p>19.1.4.4 Water Splitting Reaction 339</p> <p>19.1.4.5 Nature of Electrolyte 339</p> <p>19.1.4.6 Catalysis 339</p> <p>19.1.4.7 Crystallinity and Size 340</p> <p>19.1.4.8 Temperature and Pressure 340</p> <p>19.1.4.9 Heterogeneous Electron Transfer 340</p> <p>19.1.4.10 pH Dependency 340</p> <p>19.2 Graphene and Graphene-Based Nanocomposites 340</p> <p>19.2.1 Graphene 340</p> <p>19.2.2 Graphene-Based Nanocomposites 341</p> <p>19.3 Synthesis of Graphene-Based Metal Oxide Nanocomposites 342</p> <p>19.4 Application of Graphene–Metal Oxide Composites Toward Photoelectrochemical Water Splitting 345</p> <p>19.5 Summary and Future Perspective 349</p> <p>References 349</p> <p><b>20 2D MOFs Nanosheets </b><b>357</b><br /> <i>Arezou Mohammadinezhad</i></p> <p>20.1 Introduction 357</p> <p>20.2 Synthetic Strategies 357</p> <p>20.2.1 Top-Down Method 358</p> <p>20.2.1.1 Sonication Exfoliation 358</p> <p>20.2.1.2 Mechanical Exfoliation Method 359</p> <p>20.2.1.3 Chemical Exfoliation 359</p> <p>20.2.1.4 Langmuir–Blodgett Method 359</p> <p>20.2.1.5 Solvent-Induced Exfoliation 359</p> <p>20.2.2 Bottom-Up Method 359</p> <p>20.2.2.1 Interfacial Synthesis Method 360</p> <p>20.2.2.2 Surfactant-Assisted Method 360</p> <p>20.2.2.3 Template Method 360</p> <p>20.2.2.4 Sonication Synthesis Method 360</p> <p>20.2.3 Other Synthesis Methods 361</p> <p>20.3 Applications of 2D MOFs Nanosheets 361</p> <p>20.3.1 Gas Separation 361</p> <p>20.3.2 Energy Conversion and Storage 361</p> <p>20.3.3 Catalysis 362</p> <p>20.3.4 Sensing Platforms 362</p> <p>20.3.5 Biomedicine 362</p> <p>20.4 Composites of 2D MOF Nanosheets 362</p> <p>20.5 Conclusion 363</p> <p>References 363</p> <p><b>21 Introduction and Applications of 2D Nanomaterials </b><b>369<br /> </b><i>Atta U. Rehman, Fatima Afzal, Muhammad T. Ansar, Amna Sajjad, and Muhammad A. Munir</i></p> <p>21.1 Introduction 369</p> <p>21.2 Applications of 2D Nanomaterials 371</p> <p>21.2.1 Photodetectors 371</p> <p>21.2.2 Phototransistors 371</p> <p>21.2.3 p–n Junction Photodetectors 372</p> <p>21.2.4 Field-Effect Transistors 373</p> <p>21.2.5 Gas Sensors 373</p> <p>21.2.6 Lithium-Ion Batteries 374</p> <p>21.2.7 Lithium-Ion Battery Anodes 374</p> <p>21.2.8 Lithium-Ion Battery Cathodes 375</p> <p>21.2.9 Graphene as Current Collector 376</p> <p>21.2.10 Graphene in Super capacitors 376</p> <p>21.2.11 Graphene Nanocomposites with Distinct Materials 377</p> <p>21.2.12 Doping and Surface Modifications 378</p> <p>21.2.13 Graphene for Gas Sensors 379</p> <p>21.3 Conclusion 379</p> <p>References 380</p> <p><b>22 2D Nanomaterials for Photocatalysis and Photoelectrocatalysis </b><b>383</b><br /> <i>Gubbala V. Ramesh, N. Mahendar Reddy, Muvva D. Prasad, D. Saritha, and Kola Ramesh</i></p> <p>22.1 Introduction 383</p> <p>22.2 Photocatalytic CO<sub>2</sub> Reduction 385</p> <p>22.3 Photoelectrocatalytic CO<sub>2</sub> Reduction 388</p> <p>22.4 Photocatalytic Hydrogen Production 391</p> <p>22.5 Photoelectrocatalytic Hydrogen Production 395</p> <p>22.6 Photocatalytic Dye Degradation 397</p> <p>22.7 Conclusion 401</p> <p>References 402</p> <p>Index 413</p>
<p><b>Ganesh S. Kamble</b>, PhD, Assistant Professor, Department of Engineering Chemistry, College of Engineering, Kolhapur Institute of Technology, India.</p>
<p><b>Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications</b></p> <p>In <i>2D Functional Nanomaterials: Synthesis, Characterization, and Applications,</i> Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. <p>The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. <ul><li>Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives</li> <li>Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides</li> <li>Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors</li> <li>Discusses applications of 2D nanomaterials for cancer therapy and recent trends in graphene-latex nanocomposites</li></ul> <p>Perfect for materials scientists, inorganic chemists, and electronics engineers, <i>2D Functional Nanomaterials: Synthesis, Characterization, and Applications</i> is also anessential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €