Details

An Introduction to Molecular Biotechnology


An Introduction to Molecular Biotechnology

Fundamentals, Methods and Applications
3. Aufl.

von: Michael Wink

87,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 03.12.2020
ISBN/EAN: 9783527812868
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Completely updated in line with the rapid progress made in the field, this new edition of the highly-praised textbook addresses powerful new methods and concepts in biotechnology, such as genome editing, reprogrammed stem cells, and personalized medicine.<br> An introduction to the fundamentals in molecular and cell biology is followed by a description of standard techniques, including purification and analysis of biomolecules, cloning techniques, gene expression systems, genome editing methods, labeling of proteins and in situ-techniques, standard and high resolution microscopy. The third part focuses on key areas in research and application, ranging from functional genomics, proteomics and bioinformatics to drug targeting, recombinant antibodies and systems biology. The final part looks at the biotechnology industry, explaining intellectual property issues, legal frameworks for pharmaceutical products and the interplay between start-up and larger companies. The contents are beautifully illustrated throughout, with hundreds of full color diagrams and photographs.<br> Provides students and professionals in life sciences, pharmacy and biochemistry with everything they need to know about molecular biotechnology.<br>
<p>Abbreviations xix</p> <p><b>Part I Fundamentals of Cellular and Molecular Biology </b><b>1</b></p> <p><b>1 The Cell as the Basic Unit of Life </b><b>3<br /></b><i>Michael Wink</i></p> <p>References 8</p> <p>Further Reading 8</p> <p><b>2 Structure and Function of Cellular Macromolecules 9<br /></b><i>Michael Wink</i></p> <p>2.1 Structure and Function of Sugars 9</p> <p>2.2 Structure of Membrane Lipids 13</p> <p>2.3 Structure and Function of Proteins 17</p> <p>2.4 Structure of Nucleotides and Nucleic Acids (DNA and RNA) 25</p> <p>References 32</p> <p>Further Reading 32</p> <p><b>3 Structure and Functions of a Cell </b><b>33<br /></b><i>Michael Wink</i></p> <p>3.1 Structure of a Eukaryotic Cell 33</p> <p>3.1.1 Structure and Function of the Cytoplasmic Membrane 33</p> <p>3.1.1.1 Membrane Permeability 33</p> <p>3.1.1.2 Transport Processes Across Biomembranes 34</p> <p>3.1.1.3 Receptors and Signal Transduction at Biomembranes 37</p> <p>3.1.2 Endomembrane System in a Eukaryotic Cell 40</p> <p>3.1.3 Mitochondria and Chloroplasts 45</p> <p>3.1.4 Cytoplasm 49</p> <p>3.1.5 Cytoskeleton 51</p> <p>3.1.6 Cell Walls 53</p> <p>3.2 Structure of Bacteria 53</p> <p>3.3 Structure of Viruses 55</p> <p>3.4 Differentiation of Cells 56</p> <p>3.5 Cell Death 60</p> <p>References 61</p> <p>Further Reading 61</p> <p><b>4 Biosynthesis and Function of Macromolecules (DNA, RNA, and Proteins) </b><b>63<br /></b><i>Michael Wink</i></p> <p>4.1 Genomes, Chromosomes, and Replication 63</p> <p>4.1.1 Genome Size 63</p> <p>4.1.2 Composition and Function of Chromosomes 67</p> <p>4.1.3 Mitosis and Meiosis 69</p> <p>4.1.4 Replication 71</p> <p>4.1.5 Mutations and Repair Mechanisms 72</p> <p>4.2 Transcription: From Gene to Protein 77</p> <p>4.3 Protein Biosynthesis (Translation) 81</p> <p>Further Reading 85</p> <p><b>5 Distributing Proteins in the Cell (Protein Sorting) </b><b>87<br /></b><i>Michael Wink</i></p> <p>5.1 Import and Export of Proteins via the Nuclear Pore 87</p> <p>5.2 Import of Proteins in Mitochondria, Chloroplasts, and Peroxisomes 88</p> <p>5.3 Protein Transport into the Endoplasmic Reticulum 89</p> <p>5.4 Vesicle Transport from the ER via the Golgi Apparatus to the Cytoplasmic Membrane 92</p> <p>References 94</p> <p>Further Reading 94</p> <p><b>6 Evolution and Diversity of Organisms </b><b>95<br /></b><i>Michael Wink</i></p> <p>6.1 Prokaryotes 95</p> <p>6.2 Eukaryotes 95</p> <p>References 101</p> <p>Further Reading 101</p> <p><b>Part II Standard Methods in Molecular Biotechnology </b><b>103</b></p> <p><b>7 Isolation and Purification of Proteins </b><b>105<br /></b><i>Thomas Wieland</i></p> <p>7.1 Introduction 105</p> <p>7.2 Producing a Protein Extract 106</p> <p>7.3 Gel Electrophoretic Separation Methods 107</p> <p>7.3.1 Principles of Electrophoresis 107</p> <p>7.3.2 Native Gel Electrophoresis 107</p> <p>7.3.3 Discontinuous Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 107</p> <p>7.3.4 Two-Dimensional (2D) Gel Electrophoresis and Isoelectric Focusing (IEF) 108</p> <p>7.3.5 Detecting Proteins in Gels 108</p> <p>7.4 Methods of Protein Precipitation 109</p> <p>7.5 Column Chromatography Methods 109</p> <p>7.5.1 General Principles of Separation 109</p> <p>7.5.1.1 Size Exclusion Chromatography (Gel Filtration) 109</p> <p>7.5.1.2 Hydrophobic Interaction Chromatography 111</p> <p>7.5.1.3 Ion Exchange Chromatography 111</p> <p>7.5.1.4 Hydroxyapatite Chromatography 112</p> <p>7.5.2 Group-Specific Separation Techniques 112</p> <p>7.5.2.1 Chromatography on Protein A or Protein G 112</p> <p>7.5.2.2 Chromatography on Cibacron Blue (Blue Gel) 112</p> <p>7.5.2.3 Chromatography on Lectins 112</p> <p>7.5.2.4 Chromatography on Heparin 113</p> <p>7.5.3 Purification of Recombinant Fusion Proteins 113</p> <p>7.5.3.1 Chromatography on Chelating Agents 113</p> <p>7.5.3.2 Chromatography on Glutathione Matrices 114</p> <p>7.6 Examples 114</p> <p>7.6.1 Example 1: Purification of Nucleoside Diphosphate Kinase from the Cytosol of Bovine Retina Rod Cells 114</p> <p>7.6.2 Example 2: Purification of Recombinant His6-RGS16 After Expression in <i>E. coli </i>114</p> <p>Further Reading 115</p> <p><b>8 Mass Spectrometry and Applications in Proteomics and Microbial Identification </b><b>117<br /></b><i>Andreas Schlosser and Wolf D. Lehmann</i></p> <p>8.1 Principles of ESI and MALDI Mass Spectrometry 117</p> <p>8.2 Instrumental Setup 118</p> <p>8.3 Intact Protein Analysis 119</p> <p>8.3.1 Protein Digestion 119</p> <p>8.3.2 Peptide Fragmentation 119</p> <p>8.3.3 Protein Identification with MS/MS Spectra 121</p> <p>8.4 Protein and Proteome Quantification 121</p> <p>8.4.1 Label-Free Quantification 121</p> <p>8.4.2 Chemical Stable Isotope Labeling 121</p> <p>8.4.3 Metabolic Stable Isotope Labeling 122</p> <p>8.5 Protein–Protein Interaction Analysis 123</p> <p>8.6 Analysis of Posttranslational Modifications 124</p> <p>8.7 Microbial Identification and Resistance Detection 125</p> <p>References 126</p> <p><b>9 Isolation of DNA and RNA </b><b>129<br /></b><i>Hans Weiher</i></p> <p>9.1 Introduction 129</p> <p>9.2 DNA Isolation 129</p> <p>9.3 RNA Isolation 131</p> <p>9.3.1 Enrichment of mRNA 131</p> <p>Reference 131</p> <p><b>10 Chromatography and Electrophoresis of Nucleic Acids </b><b>133<br /></b><i>Hans Weiher</i></p> <p>10.1 Introduction 133</p> <p>10.2 Chromatographic Separation of Nucleic Acids 133</p> <p>10.3 Electrophoresis 134</p> <p>10.3.1 Agarose Gel Electrophoresis: Submarine Electrophoresis 134</p> <p>10.3.2 Pulsed-Field Agarose Gel Electrophoresis 134</p> <p>10.3.3 Polyacrylamide Gel Electrophoresis (PAGE) 135</p> <p>Further Reading 135</p> <p><b>11 Hybridization of Nucleic Acids </b><b>137<br /></b><i>Hans Weiher</i></p> <p>11.1 Significance of Base Pairing 137</p> <p>11.2 Experimental Hybridization: Kinetic and Thermodynamic Control 137</p> <p>11.3 Analytical Techniques 138</p> <p>11.3.1 Clone Detection, Southern Blotting, Northern Blotting, and Gene Diagnosis 138</p> <p>11.3.2 Systematic Gene Diagnosis and Expression Screening Based on Gene Arrays 139</p> <p>11.3.3 <i>In Situ </i>Hybridization 139</p> <p>References 140</p> <p>Further Reading 140</p> <p><b>12 Use of Enzymes in the Modification of Nucleic Acids 141<br /></b><i>Ingrid Herr and MichaelWink</i></p> <p>12.1 Restriction Enzymes (Restriction Endonucleases) 141</p> <p>12.2 Ligases 142</p> <p>12.3 Methyl transferases 142</p> <p>12.4 DNA Polymerases 143</p> <p>12.5 RNA Polymerases and Reverse Transcriptase 144</p> <p>12.6 Nucleases 144</p> <p>12.7 T4 Polynucleotide Kinase 144</p> <p>12.8 Phosphatases 145</p> <p>Further Reading 145</p> <p><b>13 Polymerase Chain Reaction </b><b>147<br /></b><i>Richard Jäger and Hans Weiher</i></p> <p>13.1 Introduction 147</p> <p>13.2 PCR Methods 147</p> <p>13.2.1 Basic Principle 147</p> <p>13.2.2 Primer Design and Hot Start PCR 148</p> <p>13.2.3 Multiplex PCR 149</p> <p>13.2.4 RT-PCR 149</p> <p>13.2.5 Qualitative Analysis of the PCR Products 149</p> <p>13.3 PCR as a Quantitative Method 149</p> <p>13.3.1 PCR Phases and PCR Efficiency 149</p> <p>13.3.2 Quantitative Real-Time PCR 150</p> <p>13.3.3 Digital PCR 151</p> <p>13.4 Areas of Application 151</p> <p>13.4.1 Genome Analysis 151</p> <p>13.4.2 Cloning Techniques 152</p> <p>13.4.3 Gene Expression Studies 152</p> <p>Further Reading 152</p> <p><b>14 DNA Sequencing </b><b>153<br /></b><i>Richard Jäger and HansWeiher</i></p> <p>14.1 Introduction 153</p> <p>14.2 The Sanger Method 153</p> <p>14.3 Pyrosequencing 154</p> <p>14.4 Second-Generation Sequencing: Illumina and Ion Torrent 155</p> <p>14.4.1 Overview 155</p> <p>14.4.2 The Illumina Sequencing System 155</p> <p>14.4.3 The Ion Torrent Sequencing System 156</p> <p>14.5 Third-Generation Sequencing Techniques 156</p> <p>14.5.1 Overview 156</p> <p>14.5.2 SMRT Sequencing 157</p> <p>14.5.3 Nanopore Sequencing 157</p> <p>14.6 The Impact of the DNA Sequencing Technology 158</p> <p>References 158</p> <p>Further Reading 158</p> <p>Websites 158</p> <p><b>15 Cloning Procedures </b><b>159<br /></b><i>Thomas Wieland and Susanne Lutz</i></p> <p>15.1 Introduction 159</p> <p>15.2 Construction of Recombinant Vectors 159</p> <p>15.2.1 Insert 159</p> <p>15.2.2 Vector 161</p> <p>15.2.3 Essential Components of Vectors 162</p> <p>15.2.3.1 Bacterial Origin of Replication (<i>ori</i>) 162</p> <p>15.2.3.2 Antibiotic Resistance 162</p> <p>15.2.3.3 Polylinkers 162</p> <p>15.2.4 Cloning Using Recombination Systems 162</p> <p>15.2.5 Further Components of Vectors for Prokaryotic Expression Systems 163</p> <p>15.2.5.1 Promoter 163</p> <p>15.2.5.2 Ribosome-Binding Site 163</p> <p>15.2.5.3 Termination Sequence 164</p> <p>15.2.5.4 Fusion Sequence 164</p> <p>15.2.6 Further Components of Eukaryotic Expression Vectors 164</p> <p>15.2.6.1 Eukaryotic Expression Vectors: Yeast 164</p> <p>15.2.6.2 Eukaryotic Expression Vectors for Mammal Cells 165</p> <p>15.2.6.3 Viral Expression Systems for Mammalian Cells 167</p> <p>15.2.7 Nonviral Introduction of Heterologous DNA to Host Organisms (Transformation, Transfection) 168</p> <p>15.2.7.1 Transformation of Prokaryotes 168</p> <p>15.2.7.2 Transformation of Yeast Cells 169</p> <p>15.2.7.3 Transfection of Mammal Cells 169</p> <p>Further Reading 170</p> <p><b>16 Expression of Recombinant Proteins </b><b>171<br /></b><i>Thomas Wieland</i></p> <p>16.1 Introduction 171</p> <p>16.2 Expression of Recombinant Proteins in Host Organisms 171</p> <p>16.2.1 Expression in <i>E. coli </i>172</p> <p>16.2.2 Expression in Yeasts 175</p> <p>16.2.3 Expression in Insect Cells 177</p> <p>16.2.3.1 Expression Based on Recombinant Baculoviruses 177</p> <p>16.2.3.2 Expression of Proteins in Stably Transfected Insect Cells 178</p> <p>16.2.4 Expression of Proteins in Mammalian Cells 178</p> <p>16.3 Expression in Cell-Free Systems 179</p> <p>16.3.1 Expression of Proteins in Reticulocyte Lysates 180</p> <p>16.3.2 Protein Expression Using <i>E. coli </i>Extracts 180</p> <p>Further Reading 180</p> <p><b>17 Patch Clamp Method </b><b>181<br /></b><i>Robert Kraft</i></p> <p>17.1 Ion Channels 181</p> <p>17.2 Technical Requirements of the Patch Clamp Method 181</p> <p>17.3 Patch Clamp Configurations 182</p> <p>17.4 Applications of the Patch Clamp Method 183</p> <p>Reference 185</p> <p>Further Reading 185</p> <p><b>18 Cell Cycle Analysis </b><b>187<br /></b><i>Stefan Wölfl</i></p> <p>18.1 Introduction 187</p> <p>18.2 Analyzing the Cell Cycle 187</p> <p>18.3 Experimental Analysis of the Cell Cycle 189</p> <p>18.3.1 Preparing Synchronized Cell Cultures of S. cerevisiae 189</p> <p>18.3.1.1 Centrifugal Elutriation 190</p> <p>18.3.1.2 Cell Cycle Arrest Using α-Factor 190</p> <p>18.3.2 Identification of Cell Cycle Stages 191</p> <p>18.3.2.1 Budding Index 191</p> <p>18.3.2.2 Fluorescent Staining of the Nucleus 191</p> <p>18.3.2.3 Detection of Cell Cycle Phases Using Fluorescent Proteins as Reporters 194</p> <p>Acknowledgments 195</p> <p>Further Reading 196</p> <p><b>19 Microscopic Techniques </b><b>197<br /></b><i>Stephan Diekmann</i></p> <p>19.1 Introduction 197</p> <p>19.2 Electron Microscopy 197</p> <p>19.2.1 Cryo-electron Microscopy 199</p> <p>19.2.2 Electron Tomography 199</p> <p>19.3 Atomic or Scanning Force Microscopy 199</p> <p>19.3.1 Force Spectroscopy 200</p> <p>19.3.2 Advantages and Disadvantages 201</p> <p>19.4 Light Microscopy 201</p> <p>19.4.1 Deconvolution 202</p> <p>19.4.2 Confocal Microscopy 202</p> <p>19.4.3 Why Fluorescence? 203</p> <p>19.4.4 Nanoscopy 203</p> <p>19.5 Microscopy in the Living Cell 204</p> <p>19.5.1 Analysis of Fluorescently Labeled Proteins <i>In Vivo </i>205</p> <p>19.5.2 Fluorescence Recovery After Photobleaching 206</p> <p>19.5.3 Fluorescence Correlation Spectroscopy 206</p> <p>19.5.4 Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy 207</p> <p>19.5.5 Single-Molecule Fluorescence 207</p> <p>Further Reading 207</p> <p><b>20 Laser Applications </b><b>209<br /></b><i>Rainer Fink</i></p> <p>20.1 Laser Development: A Historical Perspective 209</p> <p>20.2 Types of Lasers and Setups 210</p> <p>20.3 Properties of Laser Radiation 210</p> <p>20.4 Applications 211</p> <p>20.4.1 Laser Scanning Microscopy 211</p> <p>20.4.2 Optical Tweezers 212</p> <p>20.4.3 Laser Microdissection and Laser Therapy 212</p> <p>20.4.4 Manufacturing of Products in Medical Technology and Biotechnology Products 213</p> <p>Further Reading 213</p> <p><b>Part III Key Topics </b><b>215</b></p> <p><b>21 Sequencing the Universe of Life </b><b>217<br /></b><i>Stefan Wiemann</i></p> <p>21.1 What to Sequence? 217</p> <p>21.1.1 Whole-Genome Sequencing 217</p> <p>21.1.2 Exome Sequencing 220</p> <p>21.1.3 (Gene) Panel Sequencing 220</p> <p>21.1.4 RNA Sequencing 221</p> <p>21.1.4.1 Tag- vs. Full-Length Sequencing 221</p> <p>21.1.4.2 Sequencing of RNA Species and Modifications 221</p> <p>21.1.4.3 Sequencing of Single Cells 222</p> <p>21.1.4.4 <i>In </i>S<i>itu </i>Sequencing 222</p> <p>21.1.5 (Whole-Genome) Bisulfite Sequencing of DNA 223</p> <p>21.1.6 Sequencing to Characterize Chromatin Structure and Beyond 223</p> <p>21.2 Sequencing Projects: Human 224</p> <p>21.2.1 Initial Sequencing of the Human Genome 224</p> <p>21.2.2 The 1000 Genomes Project: Assessing Natural Variation 224</p> <p>21.2.3 Screening for Genetic Disease 225</p> <p>21.2.4 Sequencing of Populations 226</p> <p>21.2.5 TCGA and ICGC: Screening for Cancer Driver Mutations 226</p> <p>21.3 Sequencing Other Species, Environments,… 228</p> <p>21.4 Sequencing in the Clinics: Personalizing Oncology 228</p> <p>21.5 Sequencing in the Private Sector: Direct to Consumer Testing (DTC) 231</p> <p>21.6 The Information Content of a Genome Sequence and Ethical Consequences 231</p> <p>References 232</p> <p><b>22 Cellular Systems Biology </b><b>239<br /></b><i>Melanie Boerries, Hauke Busch, and Rainer König</i></p> <p>22.1 Introduction 239</p> <p>22.2 Analysis of Cellular Networks by Top-Down Approaches 240</p> <p>22.2.1 Motivation 240</p> <p>22.2.2 Definitions and Construction of the Networks 240</p> <p>22.2.3 Gene Set Enrichment Tests 241</p> <p>22.2.4 Inferring Gene Regulators Employing Gene Regulatory Models 242</p> <p>22.2.5 Network Descriptors 243</p> <p>22.2.5.1 Scale-Free Networks 243</p> <p>22.2.5.2 Centrality 243</p> <p>22.2.5.3 The Clustering Coefficient 244</p> <p>22.2.6 Detecting Essential Enzymes with a Machine Learning Approach 244</p> <p>22.2.7 Elementary Flux Modes 244</p> <p>22.3 Overview over Bottom-Up Modeling of Biochemical Networks 247</p> <p>22.3.1 Motivation 247</p> <p>22.3.2 Choosing Model Complexity and Model Building 248</p> <p>22.3.3 Model Simulation 251</p> <p>22.3.4 Model Calibration 252</p> <p>22.3.5 Model Verification and Analysis 254</p> <p>22.3.6 Examples 254</p> <p>Further Reading 258</p> <p>References 259</p> <p><b>23 Protein–Protein and Protein–DNA Interactions </b><b>261<br /></b><i>Peter Uetz and Ehmke Pohl</i></p> <p>23.1 Protein–Protein Interactions 261</p> <p>23.1.1 Classification and Specificity: Protein Domains 261</p> <p>23.1.2 Protein Networks and Complexes 262</p> <p>23.1.3 Structural Properties of Interacting Proteins 262</p> <p>23.1.4 Which Forces Mediate Protein–Protein Interactions? 263</p> <p>23.1.4.1 Thermodynamics 264</p> <p>23.1.4.2 Energetics 264</p> <p>23.1.5 Methods to Examine Protein–Protein Interactions 264</p> <p>23.1.6 Theoretical Prediction of Protein–Protein Interactions 266</p> <p>23.1.7 Regulation of Protein–Protein Interactions 266</p> <p>23.1.8 Biotechnological and Medical Applications of Protein–Protein Interactions 268</p> <p>23.2 Protein–DNA Interactions 269</p> <p>23.2.1 Specific Protein–DNA Interaction 269</p> <p>23.2.2 Thermodynamic Consideration 270</p> <p>23.2.3 Methods to Study Protein–DNA Interactions 270</p> <p>23.2.3.1 Structural Classification of Protein–DNA Complexes 270</p> <p>23.2.4 Regulatory Networks and System Biology 270</p> <p>23.2.5 Medical Importance of Protein–DNA Interactions 273</p> <p>23.2.6 Biotechnological Applications 274</p> <p>References 275</p> <p>Further Reading 275</p> <p><b>24 Bioinformatics </b><b>277<br /></b><i>Benedikt Brors</i></p> <p>24.1 Introduction 277</p> <p>24.2 Data Sources 277</p> <p>24.2.1 Primary Databases: EMBL/GenBank/DDBJ, PIR, and Swiss-Prot 277</p> <p>24.2.2 Genome Databases: Ensembl and GoldenPath 278</p> <p>24.2.3 Motif Databases: BLOCKS, PROSITE, Pfam, ProDom, and SMART 278</p> <p>24.2.4 Molecular Structure Databases: PDB and SCOP 278</p> <p>24.2.5 Transcriptome Databases: SAGE, ArrayExpress, and GEO 279</p> <p>24.2.6 Reference Databases: PubMed, OMIM, and GeneCards 279</p> <p>24.2.7 Pathway Databases and Gene Ontology 279</p> <p>24.3 Sequence Analysis 280</p> <p>24.3.1 Kyte–Doolittle Plot, HelicalWheel Analysis, and Signal Sequence Analysis 280</p> <p>24.3.2 Pairwise Alignment 281</p> <p>24.3.2.1 Local/Global 281</p> <p>24.3.2.2 Optimal/Heuristic 282</p> <p>24.3.3 Alignment Statistics 282</p> <p>24.3.4 Multiple Alignment 282</p> <p>24.4 Evolutionary Bioinformatics 283</p> <p>24.4.1 StatisticalModels of Evolution 283</p> <p>24.4.2 Relation to Score Matrices 284</p> <p>24.4.3 Phylogenetic Analysis 285</p> <p>24.5 Gene Prediction 285</p> <p>24.5.1 Neural Networks or HMMs Based on Hexanucleotide Composition 286</p> <p>24.5.2 Comparison with Expressed Sequence Tags or Other Genomes (<i>Fugu</i>, Mouse) 286</p> <p>24.6 Bioinformatics in Transcriptome and Proteome Analysis 287</p> <p>24.6.1 Preprocessing and Normalization 287</p> <p>24.6.2 Feature Selection 288</p> <p>24.6.3 Similarity Measures: Euclidean Distance, Correlation, Manhattan Distance, Mahalanobis Distance, and Entropy Measures 288</p> <p>24.6.4 Unsupervised Learning Procedures: Clustering, Principal Component Analysis, Multidimensional Scaling, and Correspondence Analysis 289</p> <p>24.6.5 Supervised Learning Procedures: Linear Discriminant Analysis, Decision Trees, Support Vector Machines, and ANNs 289</p> <p>24.6.6 Analysis of Overrepresentation of Functional Categories 290</p> <p>24.7 Analysis of Ultraparallel Sequencing Data 291</p> <p>24.7.1 Mapping of Ultraparallel Sequencing Data 291</p> <p>24.7.2 Genome (Re-)sequencing 292</p> <p>24.7.3 Transcriptome Sequencing 292</p> <p>24.7.4 ChIP-seq 293</p> <p>24.7.5 Epigenetic Analysis 293</p> <p>24.7.6 Single-Cell Analysis 294</p> <p>24.7.7 Bioethics of Human Sequencing Data 294</p> <p>24.8 Bioinformatic Software 294</p> <p>Further Reading 295</p> <p><b>25 Drug Research </b><b>297<br /></b><i>Manfred Koegl, Ralf Tolle, Ulrich Deuschle, Claus Kremoser, and Michael Wink</i></p> <p>25.1 Introduction 297</p> <p>25.2 Active Compounds and Their Targets 297</p> <p>25.2.1 Identification of Potential Targets in the Human Genome 298</p> <p>25.2.2 Comparative Genome Analysis 298</p> <p>25.2.3 Experimental Target Identification: <i>In Vitro </i>Methods 299</p> <p>25.2.4 Experimental Identification of Targets: Model Organisms 300</p> <p>25.2.5 Experimental Target Identification in Humans 300</p> <p>25.2.6 Difference Between Target Candidates and Genuine Targets 301</p> <p>25.2.7 Biologicals 301</p> <p>25.2.8 DNA and RNA in New Therapeutic Approaches 302</p> <p>25.2.9 Patent Protection for Targets 303</p> <p>25.2.10 Compound Libraries as a Source of Drug Discovery 304</p> <p>25.2.11 High-Throughput Screening 304</p> <p>25.2.12 High-Quality Paramounts in Screening Assays 304</p> <p>25.2.13 Virtual Ligand Screening 306</p> <p>25.2.14 Activity of Drugs Described in Terms of Efficacy and Potency 307</p> <p>25.2.15 Chemical Optimization of Lead Structures 307</p> <p>25.3 Preclinical Pharmacology and Toxicology 308</p> <p>25.4 Clinical Development 309</p> <p>25.5 Clinical Testing 309</p> <p>Further Reading 310</p> <p><b>26 Drug Targeting and Prodrugs </b><b>311<br /></b><i>Gert Fricker</i></p> <p>26.1 Drug Targeting 311</p> <p>26.1.1 Passive Targeting by Exploiting Special Physiological Properties of the Target Tissue 311</p> <p>26.1.2 Physical Targeting 312</p> <p>26.1.3 Active Targeting 313</p> <p>26.1.4 Cellular Carrier Systems 316</p> <p>26.2 Prodrugs 316</p> <p>26.2.1 Prodrugs to Improve Drug Solubility 316</p> <p>26.2.2 Prodrugs to Increase Stability 317</p> <p>26.3 Penetration of Drugs Through Biological Membranes 317</p> <p>26.4 Prodrugs to Extend Duration of Effect 318</p> <p>26.5 Prodrugs for the Targeted Release of a Drug 318</p> <p>26.6 Prodrugs to Minimize Side Effects 320</p> <p>References 320</p> <p><b>27 Molecular Diagnostics in Medicine </b><b>323<br /></b><i>Stefan Wölfl and Reinhard Gessner</i></p> <p>27.1 Introduction 323</p> <p>27.2 Uses of Molecular Diagnostics 323</p> <p>27.2.1 Introduction 323</p> <p>27.2.2 Monogenic and Polygenic Diseases 323</p> <p>27.2.3 Individual Variability in the Genome: Forensics 325</p> <p>27.2.4 Individual Variability in the Genome: HLA Typing 325</p> <p>27.2.5 Individual Variability in the Genome: Pharmacogenomics 325</p> <p>27.2.6 Individual Variability in the Genome: Susceptibility to Infectious Diseases 326</p> <p>27.2.7 Viral Diagnosis 326</p> <p>27.2.8 Microbial Diagnosis and Resistance Diagnosis 327</p> <p>27.3 Which Molecular Variations Should be Detected 327</p> <p>27.3.1 Point Mutations 327</p> <p>27.3.2 Insertions and Deletions 328</p> <p>27.3.3 Nucleotide Repeats 328</p> <p>27.3.4 Deletion or Duplication of Genes 328</p> <p>27.3.5 Recombination Between Chromosomes 329</p> <p>27.3.6 Epigenetic Changes 329</p> <p>27.4 Molecular Diagnostic Methods 330</p> <p>27.4.1 DNA/RNA Purification 331</p> <p>27.4.2 Detection of Target Sequence and Known Sequence Variations 331</p> <p>27.4.2.1 Nucleic Acid Tests 331</p> <p>27.4.2.2 Quantitative PCR 332</p> <p>27.4.2.3 Multiplexing of Nucleic Acid Detection: Nucleic Acid Microarrays 333</p> <p>27.4.2.4 Production and Manufacture of Microarrays 334</p> <p>27.4.2.5 Applications of Fragment Length Analysis 335</p> <p>27.4.2.6 Minisequencing 336</p> <p>27.4.2.7 Determination of Unknown Mutations 336</p> <p>27.5 Outlook 337</p> <p>Further Reading 338</p> <p>Historic Article: “News & Views” 338</p> <p>Reviews 338</p> <p>Web Link 338</p> <p>Textbooks 338</p> <p><b>28 Recombinant Antibodies and Phage Display </b><b>339<br /></b><i>Gustavo Marçal Schmidt Garcia Moreira and Stefan Dübel</i></p> <p>28.1 Introduction 339</p> <p>28.2 Generation of Specific Recombinant Antibodies 340</p> <p>28.2.1 Generation of Antibody Gene Libraries 341</p> <p>28.2.2 Selection Systems for Recombinant Antibodies 342</p> <p>28.2.2.1 Transgenic Mice with Human IgG Genes 342</p> <p>28.2.2.2 <i>In Vitro </i>Selection Systems 342</p> <p>28.3 Production and Purification of Recombinant Antibodies 348</p> <p>28.4 Features and Applications of Recombinant Antibodies 349</p> <p>28.4.1 Advantages of Recombinant Antibodies 349</p> <p>28.4.2 Formats and Applications of Recombinant Antibodies 350</p> <p>28.4.2.1 Camelid Antibodies and VH Domains 351</p> <p>28.4.2.2 scFv and dsFv 351</p> <p>28.4.2.3 scFv–Fc Fusions, Fc Engineering, and the Addition of Constant Domains 352</p> <p>28.4.2.4 IgG, Fusion Proteins, and Derivatives for Therapy 352</p> <p>28.4.2.5 Bispecific Antibodies 354</p> <p>28.4.2.6 Chimeric Antigen Receptors (CARs) 355</p> <p>28.4.3 The Future of Therapeutic Antibodies 355</p> <p>28.4.4 Research and <i>In Vitro </i>Diagnostics 356</p> <p>28.4.5 Intracellular and Cell-Penetrating Antibodies 356</p> <p>28.5 Outlook 357</p> <p>Further Reading 357</p> <p>Textbooks 357</p> <p>References 358</p> <p><b>29 Genetically Modified Mice and Their Impact in Medical Research </b><b>361<br /></b><i>Rolf Sprengel and Mazahir T. Hasan</i></p> <p>29.1 Overview 361</p> <p>29.2 Transgenic Mice 362</p> <p>29.2.1 Retroviral Infection 362</p> <p>29.2.2 Pronuclear Injection 363</p> <p>29.3 Homologous Recombination: Knockout (Knock-In) Mice 364</p> <p>29.4 Endonuclease-Based Knockout Mice 366</p> <p>29.5 Endonuclease-Based Knock-In Mice 367</p> <p>29.6 Conditionally Regulated Gene Expression 367</p> <p>29.7 Gene Transfer to Subpopulations of Cells 368</p> <p>29.7.1 Electroporation of Mouse Embryos (Plasmid DNA) 368</p> <p>29.7.2 Virus-Mediated Gene Transfer (Lentivirus, rAAVs) 369</p> <p>29.7.3 Virus-Mediated Gene Deletion (Cre/lox) 370</p> <p>29.7.4 Virus-Mediated Gene Knockdown (shRNA, Antagomirs) 370</p> <p>29.8 Impact of Genetically Modified Mice in Biomedicine 370</p> <p>29.8.1 Alzheimer’s Disease 370</p> <p>29.8.2 Amyotrophic Lateral Sclerosis (ALS) 370</p> <p>29.8.3 Psychological and Cognitive Disorders 371</p> <p>29.8.4 Autism Spectrum Disorder (ASD) 371</p> <p>29.8.5 Chemogenetics, Optogenetics, and Magnetogenetics 372</p> <p>29.9 Outlook 372</p> <p>Reference 373</p> <p>Further Reading 373</p> <p><b>30 Plant Biotechnology </b><b>375<br /></b><i>Helke Hillebrand and Rüdiger Hell</i></p> <p>30.1 Introduction 375</p> <p>30.1.1 Green Genetic Engineering: A New Method Toward Traditional Goals 375</p> <p>30.1.2 Challenges in Plant Biotechnology 376</p> <p>30.2 Gene Expression Control and Genome Editing 376</p> <p>30.2.1 Gene Expression Control 377</p> <p>30.2.2 Genome Editing 377</p> <p>30.3 Production of Transgenic Plants 378</p> <p>30.3.1 Transformation Systems 379</p> <p>30.3.1.1 <i>Agrobacterium </i>as a Natural Transformation System 379</p> <p>30.3.1.2 Biolistic Method: Gene Gun 381</p> <p>30.3.1.3 Plastid Transformation 382</p> <p>30.3.1.4 Viral Systems 382</p> <p>30.4 Selection of Transformed Plant Cells 383</p> <p>30.4.1 Requirements for an Optimal Selection Marker System 383</p> <p>30.4.2 Negative Selection Marker Systems 384</p> <p>30.4.3 Positive Selection Marker Systems 385</p> <p>30.4.4 Selection Systems, Genetic Engineering Safety, and Marker-Free Plants 385</p> <p>30.5 Regeneration of Transgenic Plants 387</p> <p>30.5.1 Regeneration Procedures 387</p> <p>30.5.2 Composition of Regeneration Media 387</p> <p>30.6 Plant Analysis: Identification and Characterization of Genetically Engineered Plants 388</p> <p>30.6.1 DNA and RNA Verification 388</p> <p>30.6.2 Protein Analysis 389</p> <p>30.6.3 Genetic and Molecular Maps 389</p> <p>30.6.4 Stability of Transgenic Plants 390</p> <p>Further Reading 390</p> <p><b>31 Biocatalysis in the Chemical Industry </b><b>393<br /></b><i>Michael Breuer and Bernhard Hauer</i></p> <p>31.1 Introduction 393</p> <p>31.2 Bioconversion/Enzymatic Procedures 395</p> <p>31.3 Development of an Enzyme for Industrial Biocatalysis 397</p> <p>31.3.1 Identification of Novel Biocatalysts 397</p> <p>31.3.2 Improvement of Biocatalysts 399</p> <p>31.3.3 Production of Biocatalysts 399</p> <p>31.3.4 Outlook 399</p> <p>31.3.5 Case Study 1: Screening for New Nitrilases 400</p> <p>31.3.6 Case Study 2: Use of Known Enzymes for New Reactions: Lipases for the Production of Optically Active Amines and Alcohols 400</p> <p>31.3.7 Case Study 3: Enzyme Optimization with Rational and Evolutive Methods 401</p> <p>31.4 Fermentative Procedures 402</p> <p>31.4.1 Improvement of Fermentation Processes 402</p> <p>31.4.2 Classical Strain Optimization 403</p> <p>31.4.3 Metabolic Engineering 404</p> <p>31.4.4 Case Study 4: Fermentative Production of <i>n</i>-Butanol 405</p> <p>31.4.5 Case Study 5: Production of Glutamic Acid with <i>C. glutamicum </i>406</p> <p>31.4.5.1 Molecular Mechanism of Glutamate Overproduction 406</p> <p>31.4.6 Case Study 6: Production of Lysine with <i>C. glutamicum </i>407</p> <p>31.4.6.1 Molecular Mechanism of Lysine Biosynthesis 407</p> <p>31.4.6.2 Deregulation of the Key Enzyme Aspartate Kinase 408</p> <p>31.4.7 Genomic Research and Functional Genomics 409</p> <p>31.4.8 Case Study 7: Fermentative Penicillin Production 409</p> <p>31.4.9 Case Study 8: Vitamin B2 Production 409</p> <p>31.4.9.1 Riboflavin Biosynthesis 410</p> <p>31.4.9.2 Classical Strain Development 410</p> <p>References 410</p> <p><b>Part IV Biotechnology in Industry </b><b>411</b></p> <p><b>32 Industrial Application: Biotech Industry,Markets, and Opportunities </b><b>413</b></p> <p><i>Julia Schüler</i></p> <p>32.1 Historical Overview and Definitions of Concepts 413</p> <p>32.2 Areas of Industrial Application of Molecular Biotechnology 414</p> <p>32.2.1 Red Biotechnology 414</p> <p>32.2.1.1 Biopharmaceutical Drug Development 414</p> <p>32.2.1.2 Gene and Cell Therapy 416</p> <p>32.2.1.3 Tissue Engineering/Regenerative Medicine 419</p> <p>32.2.1.4 Pharmacogenomics and Personalized Medicine 421</p> <p>32.2.1.5 Molecular Diagnostic Agents 421</p> <p>32.2.1.6 Systems Biology 422</p> <p>32.2.1.7 Synthetic Biology 422</p> <p>32.2.2 Green Biotechnology 422</p> <p>32.2.2.1 Transgenic Plants 422</p> <p>32.2.2.2 Genomic Approaches in Green Biotechnology 423</p> <p>32.2.2.3 Novel Food and Functional Food 423</p> <p>32.2.2.4 Livestock Breeding 423</p> <p>32.2.3 White Biotechnology 424</p> <p>32.3 Status Quo of the Biotech Industry Worldwide 424</p> <p>32.3.1 Global Overview 424</p> <p>32.3.2 United States 424</p> <p>32.3.3 Europe 424</p> <p><b>33 Patents in the Molecular Biotechnology Industry: Legal and Ethical Issues 425<br /></b><i>David Resnik</i></p> <p>33.1 Patent Law 425</p> <p>33.1.1 What is a Patent? 425</p> <p>33.1.2 How Does One Obtain a Patent? 426</p> <p>33.1.3 What is the Proper Subject Matter for a Patent? 426</p> <p>33.1.4 Types of Patents in Pharmaceutical and Molecular Biotechnology 427</p> <p>33.1.5 Patent Infringement 427</p> <p>33.1.6 International Patent Law 428</p> <p>33.2 Ethical and Policy Issues in Biotechnology Patents 428</p> <p>33.2.1 No Patents on Nature 428</p> <p>33.2.2 Threats to Human Dignity 429</p> <p>33.2.3 Problems with Access to Technology 430</p> <p>33.2.4 Benefit Sharing 432</p> <p>33.3 Conclusions 433</p> <p>Acknowledgments 433</p> <p><b>34 Drug Approval in the European Union and United States </b><b>435<br /></b><i>Gary Walsh</i></p> <p>34.1 Introduction 435</p> <p>34.2 Regulation Within the European Union 435</p> <p>34.2.1 The EU Regulatory Framework 435</p> <p>34.2.2 The EMA and National Competent Authorities 436</p> <p>34.2.3 New Drug Approval Routes 437</p> <p>34.2.3.1 The Centralized Procedure 437</p> <p>34.2.3.2 Decentralized Procedure and Mutual Recognition 438</p> <p>34.3 Regulation in the United States 438</p> <p>34.3.1 CDER and CBER 439</p> <p>34.3.2 The Approvals Procedure 439</p> <p>34.4 The Advent and Regulation of Biosimilars 440</p> <p>34.5 International Regulatory Harmonization 441</p> <p>References 442</p> <p><b>35 Emergence of a Biotechnology Industry </b><b>445<br /></b><i>Claus Kremoser</i></p> <p>Reference 451</p> <p>Further Reading 451</p> <p><b>36 The 101 of Founding a Biotech Company </b><b>453<br /></b><i>Claus Kremoser and Michael Wink</i></p> <p>36.1 First Steps Toward Your Own Company 453</p> <p>36.2 Employees: Recruitment, Remuneration, and Participation 456</p> <p><b>37 Marketing 459<br /></b><i>Claus Kremoser and Michael Wink</i></p> <p>37.1 Introduction 459</p> <p>37.2 What Types of Deals Are Possible? 460</p> <p>37.3 What Milestone or License Fees Are Effectively Paid in a Biotech/Pharma Cooperation? 460</p> <p>37.4 PR and IR in Biotech Companies 461</p> <p>Further Reading 462</p> <p>Websites 462</p> <p>Glossary 463</p> <p>Index 491</p>
Michael Wink studied biology and chemistry in Bonn and was awarded his doctorate from TU Braunschweig in 1980. After gaining his lecturing qualification in 1984/1985, he was awarded a Heisenberg grant by the German Research Council to work at the Max Planck Institute for Breeding Research in Cologne and from then at the Gene Center of Ludwig-Maximilians University in Munich. Following a chair for Pharmaceutical Biology at Mainz University in 1988, he accepted the post of Professor for Pharmaceutical Biology at the University of Heidelberg one year later. His areas of interest include pharmaceutical research, molecular biotechnology, and medicinal plants, as well as research into natural products and evolution.

Diese Produkte könnten Sie auch interessieren:

The Biology of Echinostomes
The Biology of Echinostomes
von: Bernard Fried, Rafael Toledo
PDF ebook
149,79 €
Antibiotic Policies
Antibiotic Policies
von: Ian M. Gould, Jos W.M. van der Meer
PDF ebook
213,99 €
Tropical and Parasitic Infections in the Intensive Care Unit
Tropical and Parasitic Infections in the Intensive Care Unit
von: Charles Feldman, George A. Sarosi
PDF ebook
149,79 €