Details

Basic Epithelial Ion Transport Principles and Function


Basic Epithelial Ion Transport Principles and Function

Ion Channels and Transporters of Epithelia in Health and Disease - Vol. 1
Physiology in Health and Disease 2nd ed. 2020

von: Kirk L. Hamilton, Daniel C. Devor

96,29 €

Verlag: Springer
Format: PDF
Veröffentl.: 26.11.2020
ISBN/EAN: 9783030527808
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

<div><div>This book discusses unique ion channels and transporters that are located within epithelial tissues of various organs including the kidney, intestine, pancreas and respiratory tract. As the authors show, these channels and transporters play crucial roles in transepithelial ion and fluid transport across epithelia and their contribution to maintaining homeostasis. Readers will be introduced to the fundamentals of ion transport in terms of function, modelling, regulation, structure and pharmacology. This is the first of three volumes highlighting the importance of epithelial ion channels and transporters in basic physiology and pathophysiology of human diseases.&nbsp;</div><div><br></div><div>This volume focuses&nbsp; on basic fundamentals of epithelial transport physiology. There is a range of chapters dedicated to specific aspects of epithelial ion transport and cell function. Accordingly, the authors discuss techniques used to determine epithelial function, principles of epithelia transport, polarization of epithelial cells, mathematical modelling of epithelial ion transport, protein folding of ion channels, degradation epithelial ion channels, fundamentals of epithelial sodium, potassium and chloride transport, fundamentals of bicarbonate secretion, volume regulation, and microRNA regulation of epithelial channels and transporters. Given its scope, Volume 1 offers a valuable resource for physiology students, scientists and clinicians alike.&nbsp;</div></div><div><br></div>
<div>1. Techniques in Epithelial Transport.- 2. Understanding Transepithelial Current Measurements.- 3. Mathematical Modeling of Epithelial Ion Transport.- 4. Rationale of Epithelia Transport.- 5. Establishment of Epithelial Polarity.- 6. Molecular Mechanisms of Apical and Basolateral Sorting in Polarized Epithelial&nbsp;Cells.- 7. Membrane Protein Folding and Structure.- 8. Epithelial Ion Channel Folding and ER Associated Degradation (ERAD).- 9. Fundamentals of Epithelial Cl- Transport.- 10. Fundamentals of Epithelial Na+ Absorption.- 11. Physiologic Influences of Transepithelial K+ Secretion.- 12. Volume Regulation in Epithelia.- 13. Fundamentals of Bicarbonate Secretion in Epithelia.- 14. Sexual Dimorphism of Epithelial Ion Channels.- 15. Non-coding RNA-Dependent Regulation of Channels/Transporters.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</div><div>&nbsp;&nbsp;</div><div><br></div>
<div><p><b>Kirk L. Hamilton</b> was born in Baltimore, Maryland in 1953. He gained his undergraduate (biology/chemistry) and M.Sc. (ecology) degrees from the University of Texas at Arlington. He obtained his Ph.D. at Utah State University under the tutelage of Dr. James A. Gessaman, where he studied incubation physiology of Barn owls. His first post-doctoral position was at the University of Texas Medical Branch in Galveston, Texas under the mentorship of Dr. Douglas C. Eaton where he studied epithelial ion transport, specifically, the epithelial sodium channel (ENaC).&nbsp; He then moved to the Department of Physiology at the University of Alabama, Birmingham for additional post-doctoral training under the supervision of the late Dr. Dale J. Benos where he further studied ENaC, and non-specific cation channels. He took his first academic post in the Department of Biology at Xavier University of Louisiana in New Orleans (1990-1994). He then joined the Department of Physiology at the University of Otago in 1994, and he is currently an Associate Professor. He has focused his research on the molecular physiology and trafficking of potassium channels (specifically KCa3.1). He has published more than 60 papers and book chapters. His research work has been funded by the NIH, American Heart Association, Cystic Fibrosis Foundation, and Lottery Health Board New Zealand. Dr. Devor and he have been collaborators since 1999. When he not working, he enjoys playing guitar (blues and jazz) and volleyball. Kirk is married to Judith Rodda, a recent Ph.D. graduate in spatial ecology. They have 2 children, Nathan (b. 1995) and Emma (b. 1998).</p><b>Daniel C. Devor</b> was born in Vandercook Lake, Michigan in 1961. His education took him through Southampton College of Long Island University, where he studied Marine Biology, before entering SUNY Buffalo for his Ph.D., under the guidance of Dr. Michael E. Duffey. During this time, he studied the role of basolateral potassium channels inregulating transepithelial ion transport. He subsequently did his post-doctoral work at the University of Alabama, Birmingham, under the mentorship of Dr. Raymond A. Frizzell, where he studied both apical CFTR and basolateral KCa3.1 in intestinal and airway epithelia. He joined the University of Pittsburgh faculty in 1995 where he is currently a Professor of Cell Biology. During this time, he has continued to study the regulation, gating and trafficking of KCa3.1 as well as the related family member, KCa2.3, publishing more than 50 papers on these topics. These studies have been funded by the NIH, Cystic Fibrosis Foundation, American Heart Association and pharmaceutical industry. When not in the lab, he enjoys photography and growing exotic plants. Dan is married to Catherine Seluga, an elementary school teacher. They have 3 children, Caitlin (b. 1990), Emily (b. 1993) and Daniel (b. 1997).<br></div>
<div><div>This book discusses unique ion channels and transporters that are located within epithelial tissues of various organs including the kidney, intestine, pancreas and respiratory tract. As the authors show, these channels and transporters play crucial roles in transepithelial ion and fluid transport across epithelia and their contribution to maintaining homeostasis. Readers will be introduced to the fundamentals of ion transport in terms of function, modelling, regulation, structure and pharmacology. This is the first of three volumes highlighting the importance of epithelial ion channels and transporters in basic physiology and pathophysiology of human diseases.&nbsp;</div><div><br></div><div>This volume focuses&nbsp; on basic fundamentals of epithelial transport physiology. There is a range of chapters dedicated to specific aspects of epithelial ion transport and cell function. Accordingly, the authors discuss techniques used to determine epithelial function, principles of epithelia transport, polarization of epithelial cells, mathematical modelling of epithelial ion transport, protein folding of ion channels, degradation epithelial ion channels, fundamentals of epithelial sodium, potassium and chloride transport, fundamentals of bicarbonate secretion, volume regulation, and microRNA regulation of epithelial channels and transporters. Given its scope, Volume 1 offers a valuable resource for physiology students, scientists and clinicians alike.&nbsp;</div></div><div><br></div>
Offers a much more comprehensive second edition with several new chapters on various ion channels Builds a bridge between historical fundamentals and the latest advances in ion channel research Provides insights and methods from leading laboratories around the world

Diese Produkte könnten Sie auch interessieren:

Proteomics and Protein-Protein Interactions
Proteomics and Protein-Protein Interactions
von: Gabriel Waksman
PDF ebook
213,99 €
Metabolome Analyses:
Metabolome Analyses:
von: Seetharaman Vaidyanathan, George G. Harrigan, Royston Goodacre
PDF ebook
149,79 €