Details

Battery Technologies


Battery Technologies

Materials and Components
1. Aufl.

von: Jianmin Ma

144,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 02.12.2021
ISBN/EAN: 9783527830039
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Battery Technologies</b> <p><b>A state-of-the-art exploration of modern battery technology</b> <p>In<i> Battery Technologies: Materials and Components,</i> distinguished researchers Dr. Jianmin Ma delivers a comprehensive and robust overview of battery technology and new and emerging technologies related to lithium, aluminum, dual-ion, flexible, and biodegradable batteries. The book offers practical information on electrode materials, electrolytes, and the construction of battery systems. It also considers potential approaches to some of the primary challenges facing battery designers and manufacturers today. <p><i>Battery Technologies: Materials and Components</i> provides readers with: <ul><li>A thorough introduction to the lithium-ion battery, including cathode and anode materials, electrolytes, and binders</li> <li>Comprehensive explorations of lithium-oxygen batteries, including battery systems, catalysts, and anodes</li> <li>Practical discussions of redox flow batteries, aqueous batteries, biodegradable batteries, and flexible batteries</li> <li>In-depth examinations of dual-ion batteries, aluminum ion batteries, and zinc-oxygen batteries</li></ul> <p>Perfect for inorganic chemists, materials scientists, and electrochemists, <i>Battery Technologies: Materials and Components</i> will also earn a place in the libraries of catalytic and polymer chemists seeking a one-stop resource on battery technology.
<p>Preface xiii</p> <p><b>1 Li-Ion Battery 1<br /> </b><i>Ruiping Liu</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 History of the Lithium-Ion Battery 1</p> <p>1.1.2 Basic Structure of Lithium-Ion Battery 1</p> <p>1.1.3 Working Mechanisms of Lithium-Ion Battery 2</p> <p>1.1.4 Characteristics of Lithium-Ion Batteries 3</p> <p>1.2 Cathode Materials for Lithium-Ion Batteries 4</p> <p>1.2.1 Layer-Structured Cathode Materials 4</p> <p>1.2.2 Spinel-Structured Cathode Materials 7</p> <p>1.2.3 Olivine-Structured Cathode Materials 9</p> <p>1.3 Anode Materials for LIBs 9</p> <p>1.3.1 Intercalation Anode Materials 11</p> <p>1.3.2 Alloy Anode Materials 13</p> <p>1.3.3 Conversion Anode Materials 14</p> <p>1.3.4 Lithium Metal Anode 17</p> <p>1.4 Electrolyte 19</p> <p>1.4.1 Liquid Electrolyte 19</p> <p>1.4.1.1 Lithium Salts 19</p> <p>1.4.1.2 Organic Solvent 20</p> <p>1.4.1.3 Functional Additives 22</p> <p>1.4.2 Solid Electrolyte 23</p> <p>1.4.2.1 Polymer Electrolyte 25</p> <p>1.4.2.2 li 3 N and its Derivatives 25</p> <p>1.4.2.3 Perovskite Solid Electrolyte 26</p> <p>1.4.2.4 Lisicon 27</p> <p>1.4.2.5 Nasicon 27</p> <p>1.4.2.6 Garnet 28</p> <p>1.4.2.7 Glassy Inorganic Solid Electrolyte 29</p> <p>1.5 Separators 31</p> <p>1.5.1 Polyolefin Separator 34</p> <p>1.5.2 Polymers with High Melting Points for Separators 36</p> <p>1.5.3 Inorganic Composite Separators 36</p> <p>1.6 Conclusions and Perspective 38</p> <p>Acknowledgments 39</p> <p>References 39</p> <p><b>2 Li–O 2 Battery 47<br /> </b><i>Zhijia Zhang, Jun Wang, Shaofei Zhang, Shihao Sun, and Xia Ma</i></p> <p>2.1 Li–O 2 Battery 47</p> <p>2.1.1 Introduction 47</p> <p>2.1.2 Cathode Materials 49</p> <p>2.1.2.1 Carbon-Based Materials 49</p> <p>2.1.2.2 Noble Metal-Based Materials 54</p> <p>2.1.2.3 Non-noble Metal-Based Materials 57</p> <p>2.1.3 Anode Materials 64</p> <p>2.1.4 Electrolyte 67</p> <p>2.1.4.1 Organic Electrolyte 67</p> <p>2.1.4.2 Quasi-Solid-State Electrolyte 67</p> <p>2.1.4.3 Solid-State Electrolyte 72</p> <p>2.1.5 Separator 73</p> <p>2.1.6 From Li–O 2 Batteries to Li–Air Batteries 76</p> <p>2.1.7 Summary and Perspective 76</p> <p>Acknowledgments 78</p> <p>References 78</p> <p><b>3 Li–Sulfur Battery 87<br /> </b><i>Xiaoqun Qi, Fengyi Yang, and Long Qie</i></p> <p>3.1 Introduction 87</p> <p>3.2 Fundamentals 88</p> <p>3.3 Cathodes 89</p> <p>3.3.1 S Cathodes 89</p> <p>3.3.1.1 Physical Confinement 90</p> <p>3.3.1.2 Physical Blocking 90</p> <p>3.3.1.3 Polymeric Organosulfur 92</p> <p>3.3.1.4 Chemical Adsorption and Catalysis 93</p> <p>3.3.2 Li<sub>2</sub>S Cathodes 97</p> <p>3.4 Electrolytes 98</p> <p>3.4.1 Ether Electrolyte 98</p> <p>3.4.2 Carbonate-Based 99</p> <p>3.4.3 Nitrile-Based 100</p> <p>3.4.4 Sulfones/Sulfoxides-Based 101</p> <p>3.4.5 Ionic Liquids 105</p> <p>3.4.6 Polymer/Solid-State Electrolytes 105</p> <p>3.4.7 Additives 108</p> <p>3.5 Anodes 109</p> <p>3.5.1 Li Anodes 109</p> <p>3.5.2 Carbon Anodes 112</p> <p>3.5.3 Silicon Anodes 113</p> <p>3.6 Challenges and Perspectives 113</p> <p>References 116</p> <p><b>4 Na-Ion Battery 125<br /> </b><i>Xiaochuan Duan, Lei Wang, and Jianmin Ma</i></p> <p>4.1 Introduction 125</p> <p>4.1.1 History of Sodium-Ion Batteries 125</p> <p>4.1.2 Composition and Working Mechanism of SIBs 126</p> <p>4.2 Cathode Materials for SIBs 127</p> <p>4.2.1 Layered Transition Metal Oxide 128</p> <p>4.2.2 Polyanionic Compounds 130</p> <p>4.2.3 Hexacyanoferrates 132</p> <p>4.2.4 Organic Compounds 133</p> <p>4.3 Anode Materials for SIBs 133</p> <p>4.3.1 Insertion Anode Materials 134</p> <p>4.3.1.1 Carbon Materials 134</p> <p>4.3.1.2 Titanium-Based Oxide 137</p> <p>4.3.2 Alloyed Anode Materials 138</p> <p>4.3.3 Conversion-Type Anode Materials 140</p> <p>4.4 Electrolytes for SIBs 142</p> <p>4.4.1 Aqueous Electrolytes 144</p> <p>4.4.2 Organic Electrolytes 144</p> <p>4.4.3 Solid-State Electrolytes 145</p> <p>4.4.3.1 Solid Polymer Electrolytes 145</p> <p>4.4.3.2 Inorganic Solid Electrolytes 146</p> <p>4.5 Separators for SIBs 147</p> <p>4.5.1 Glass Fiber Separator 147</p> <p>4.5.2 Modified Polyolefin Separator 147</p> <p>4.5.3 Other Separator 148</p> <p>References 149</p> <p><b>5 Na–O 2 Battery 153<br /> </b><i>Haiying Lu, Xianghong Chen, Yu Lei, Feng Xiao, Weiyin Gao, Jiakui Zhang, Sai Zhao, Min Yan, Chenxin Ran, and Jiantie Xu</i></p> <p>5.1 Introduction 153</p> <p>5.2 Fundamental Principles 154</p> <p>5.3 Cathode Materials 155</p> <p>5.3.1 Carbon Materials 156</p> <p>5.3.2 Metals and Their Oxides 164</p> <p>5.3.2.1 Noble Metals and Their Oxides 164</p> <p>5.3.2.2 Non-noble Metals and Their Oxides 165</p> <p>5.3.2.3 Dual Functional Composites 168</p> <p>5.4 Anode Materials 169</p> <p>5.4.1 Modification of Na Metal Anode 170</p> <p>5.4.2 Carbon Materials Modified Na Anode 174</p> <p>5.4.3 Metal Alloys/Composites/Hybrids 177</p> <p>5.5 Electrolytes 178</p> <p>5.5.1 Carbonate-Based Electrolyte 179</p> <p>5.5.2 Ether-Based Electrolyte 179</p> <p>5.5.3 DMSO- and ACN-Based Electrolytes 183</p> <p>5.5.4 Ionic Liquid-Based Electrolyte 185</p> <p>5.6 Mechanism Studies 189</p> <p>5.7 Conclusion and Perspectives 192</p> <p>Acknowledgments 194</p> <p>References 195</p> <p><b>6 Zn-Ion Battery 201<br /> </b><i>Gaoxue Jiang, Yurong Ren, Xiaobing Huang, and Jianmin Ma</i></p> <p>6.1 Introduction 201</p> <p>6.2 Fundamentals 202</p> <p>6.3 Cathode Materials 204</p> <p>6.3.1 Manganese-Based Materials 204</p> <p>6.3.2 Vanadium-Based Materials 208</p> <p>6.3.3 Prussian Blue Analogous 210</p> <p>6.3.4 Other Types of Cathode Materials 212</p> <p>6.4 Zn Anode 212</p> <p>6.4.1 Zinc Alloy Anode 214</p> <p>6.4.2 Surface Modification of Zn Anode 215</p> <p>6.4.3 Structural Optimization of the Zn Anode 216</p> <p>6.5 Aqueous Electrolytes 217</p> <p>6.5.1 Types of Zinc Salts 217</p> <p>6.5.2 Concentration of Zinc Salt 218</p> <p>6.5.3 Electrolyte Additives 219</p> <p>6.6 Challenges and Perspectives 222</p> <p>References 223</p> <p><b>7 Zn–Air Battery 229<br /> </b><i>J. Alberto Blázquez, Aroa R. Mainar, and Elena Iruin</i></p> <p>7.1 Introduction 229</p> <p>7.1.1 Metal–Air Batteries 230</p> <p>7.1.2 History of Zinc-Based Technologies 232</p> <p>7.1.3 Secondary Zinc–Air Batteries 233</p> <p>7.1.3.1 Rechargeability 233</p> <p>7.1.3.2 Industrial Approximations 234</p> <p>7.1.3.3 Limitations 234</p> <p>7.2 Electrolyte System 237</p> <p>7.2.1 Mechanisms for Zinc Dissolution 237</p> <p>7.2.2 Strategies for Developing An Optimal Electrolyte System for Secondary Zinc–Air Batteries 239</p> <p>7.2.2.1 Additives 239</p> <p>7.2.2.2 Alternatives to Alkaline Aqueous Electrolyte 240</p> <p>7.3 Bifunctional Air Electrode 242</p> <p>7.3.1 Mechanism for Bifunctional Air Electrode 242</p> <p>7.3.2 Materials for Bifunctional Air Electrode 243</p> <p>7.3.2.1 Catalysts 243</p> <p>7.3.2.2 Binder 244</p> <p>7.3.2.3 Conductive Agents 246</p> <p>7.3.2.4 Current Collector 246</p> <p>7.3.3 Electrode Structure 247</p> <p>7.4 Zinc Anode 247</p> <p>7.4.1 Zinc Electrode Configuration 247</p> <p>7.4.2 Materials for Zinc Anode 249</p> <p>7.4.2.1 Active Material 249</p> <p>7.4.2.2 Additives 249</p> <p>7.4.2.3 Gelling Agents and Binders 250</p> <p>7.4.2.4 Current Collector 251</p> <p>7.4.3 Zinc Anode Processing 251</p> <p>7.5 Membranes 252</p> <p>7.6 Summary and Perspectives 253</p> <p>Acronyms and Abbreviations 254</p> <p>References 255</p> <p><b>8 Al-Ion Battery 269<br /> </b><i>David Muñoz-Torrero, Rebeca Marcilla, and Edgar Ventosa</i></p> <p>8.1 Introduction 269</p> <p>8.2 Historical Development of Aluminum Batteries 269</p> <p>8.2.1 Primary Aluminum Batteries: Aqueous Systems 270</p> <p>8.2.2 Rechargeable Aluminum Batteries: Non-aqueous Systems 270</p> <p>8.3 Electrolytes for Al-Based Batteries 272</p> <p>8.3.1 Al Electrodeposition in CILs and Their Use in Rechargeable Al-Based Batteries 273</p> <p>8.3.2 Al Electrodeposition Using Alternative Electrolytes and Their Use in Rechargeable Al-Based Batteries 274</p> <p>8.4 Rechargeable Aluminum Batteries Classification 276</p> <p>8.4.1 Metal Oxide/Sulfide-Based Aluminum Batteries 276</p> <p>8.4.2 Polymer-Based Aluminum Batteries 279</p> <p>8.4.3 Graphite-Based Aluminum Batteries 281</p> <p>8.5 Rechargeable Aluminum Batteries Based on Graphitic Cathodes 283</p> <p>8.5.1 Carbon Paper 283</p> <p>8.5.2 Pyrolytic Graphite 284</p> <p>8.5.3 Graphitic Foam 286</p> <p>8.5.4 Graphene-Based Cathode 287</p> <p>8.5.5 Graphite Flakes-Based Cathodes 290</p> <p>8.6 Conclusions 291</p> <p>References 293</p> <p><b>9 Al-Air Batteries 299<br /> </b><i>Pengyu Meng, Jianmin Ren, Min Jiang, and Chaopeng Fu</i></p> <p>9.1 Introduction 299</p> <p>9.2 Aluminum Anodes 300</p> <p>9.2.1 Al Alloying Elements 300</p> <p>9.2.2 Research Progress of Al Anodes 301</p> <p>9.2.2.1 Aluminum Microalloying 301</p> <p>9.2.2.2 Heat Treatment of Al Anodes 302</p> <p>9.2.2.3 Processing of Al Anodes 302</p> <p>9.2.2.4 Surface coating on Al anodes 302</p> <p>9.3 Air Cathodes 302</p> <p>9.3.1 Structure of Air Cathodes 303</p> <p>9.3.2 Integrated Cathode 304</p> <p>9.3.3 Oxygen Reduction Reaction 304</p> <p>9.3.4 Electrocatalysts 305</p> <p>9.3.4.1 Precious Metals and Alloys 305</p> <p>9.3.4.2 Transition Metal Oxides 306</p> <p>9.3.4.3 Carbon-Based Catalysts 307</p> <p>9.3.4.4 Single-Atom Catalysts 308</p> <p>9.4 Electrolytes 309</p> <p>9.4.1 Aqueous Electrolytes 309</p> <p>9.4.2 Corrosion Inhibitors 309</p> <p>9.4.3 Polymer Electrolytes 310</p> <p>9.5 Al–Air Battery Structure Design 310</p> <p>9.6 Recycle of Al–Air Batteries 312</p> <p>9.7 Rechargeable Al–Air Batteries 312</p> <p>9.8 Summary and Outlook 315</p> <p>References 315</p> <p><b>10 Dual-Ion Battery 317<br /> </b><i>Haitao Wang, Luojiang Zhang, and Yongbing Tang</i></p> <p>10.1 Cation–Anion Dual-Ion Battery 317</p> <p>10.1.1 Introduction 317</p> <p>10.1.2 Cathode Materials 320</p> <p>10.1.2.1 Graphitic Materials 320</p> <p>10.1.2.2 Organic Materials 324</p> <p>10.1.2.3 Other Materials 326</p> <p>10.1.3 Anode Materials 327</p> <p>10.1.3.1 Metallic Materials 328</p> <p>10.1.3.2 Alloying-Type Materials 330</p> <p>10.1.3.3 Intercalation-Type Materials 335</p> <p>10.1.3.4 Conversion-Type Materials 336</p> <p>10.1.4 Electrolyte 337</p> <p>10.1.4.1 Organic Electrolyte 338</p> <p>10.1.4.2 Ionic Liquid Electrolyte 339</p> <p>10.1.4.3 Aqueous Electrolyte 341</p> <p>10.2 Multi-Ion Battery 342</p> <p>10.2.1 Triple-Ion Battery 343</p> <p>10.2.1.1 Dual Cation–Anion Battery 343</p> <p>10.2.1.2 Dual Anion–Cation Battery 346</p> <p>10.2.2 Quadruple-Ion Battery 348</p> <p>10.3 Summary and Perspective 350</p> <p>Acknowledgments 351</p> <p>References 351</p> <p>Index 359</p>
<p><b><i>Jianmin Ma, PhD,</b> is professor in the University of Electronic Science and Technology of China. His research interests include nanotechnology applications in lithium and sodium ion batteries, capacitors and electrocatalysis.</i></p>
<p><b>A state-of-the-art exploration of modern battery technology</b></p> <p>In<i> Battery Technologies: Materials and Components,</i> distinguished researchers Dr. Jianmin Ma delivers a comprehensive and robust overview of battery technology and new and emerging technologies related to lithium, aluminum, dual-ion, flexible, and biodegradable batteries. The book offers practical information on electrode materials, electrolytes, and the construction of battery systems. It also considers potential approaches to some of the primary challenges facing battery designers and manufacturers today. <p><i>Battery Technologies: Materials and Components</i> provides readers with: <ul><li>A thorough introduction to the lithium-ion battery, including cathode and anode materials, electrolytes, and binders</li> <li>Comprehensive explorations of lithium-oxygen batteries, including battery systems, catalysts, and anodes</li> <li>Practical discussions of redox flow batteries, aqueous batteries, biodegradable batteries, and flexible batteries</li> <li>In-depth examinations of dual-ion batteries, aluminum ion batteries, and zinc-oxygen batteries</li></ul> <p>Perfect for inorganic chemists, materials scientists, and electrochemists, <i>Battery Technologies: Materials and Components</i> will also earn a place in the libraries of catalytic and polymer chemists seeking a one-stop resource on battery technology.

Diese Produkte könnten Sie auch interessieren:

N4-Macrocyclic Metal Complexes
N4-Macrocyclic Metal Complexes
von: J.H. Zagal, Fethi Bedioui, J.P. Dodelet
PDF ebook
213,99 €
Modern Aspects of Electrochemistry 39
Modern Aspects of Electrochemistry 39
von: Constantinos G. Vayenas, Ralph E. White
PDF ebook
96,29 €