Details

Characterization of Pharmaceutical Nano- and Microsystems


Characterization of Pharmaceutical Nano- and Microsystems


Advances in Pharmaceutical Technology 1. Aufl.

von: Leena Peltonen, Dennis Douroumis, Alfred Fahr, Jüergen Siepmann, Martin J. Snowden, Vladimir P. Torchilin

165,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.10.2020
ISBN/EAN: 9781119414032
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Learn about the analytical tools used to characterize particulate drug delivery systems with this comprehensive overview</b></p> <p>Edited by a leading expert in the field, <i>Characterization of Pharmaceutical Nano- and Microsystems</i> provides a complete description of the analytical techniques used to characterize particulate drug systems on the micro- and nanoscale.</p> <p>The book offers readers a full understanding of the basic physicochemical characteristics, material properties and differences between micro- and nanosystems. It explains how and why greater experience and more reliable measurement techniques are required as particle size shrinks, and the measured phenomena grow weaker.</p> <p><i>Characterization of Pharmaceutical Nano- and Microsystems</i> deals with a wide variety of topics relevant to chemical and solid-state analysis of drug delivery systems, including drug release, permeation, cell interaction, and safety. It is a complete resource for those interested in the development and manufacture of new medicines, the drug development process, and the translation of those drugs into life-enriching and lifesaving medicines.</p> <p><i>Characterization of Pharmaceutical Nano- and Microsystems</i> covers all of the following topics:</p> <ul> <li>An introduction to the analytical tools applied to determine particle size, morphology, and shape</li> <li>Common chemical approaches to drug system characterization</li> <li>A description of solid-state characterization of drug systems</li> <li>Drug release and permeation studies</li> <li>Toxicity and safety issues</li> <li>The interaction of drug particles with cells</li> </ul> Perfect for pharmaceutical chemists and engineers, as well as all other industry professionals and researchers who deal with drug delivery systems on a regular basis, <i>Characterization of Pharmaceutical Nano- and Microsystems</i> also belongs on bookshelves of interested students and faculty who interact with this topic.
<p>List of Contributors xiii</p> <p>Series Preface xvii</p> <p>List of Abbreviations xix</p> <p><b>1 Selecting a Particle Sizer for the Pharmaceutical Industry 1<br /></b><i>Margarida Figueiredo, M. José Moura and Paulo J. Ferreira</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Relevance of Particle Size in the Pharmaceutical Industry 1</p> <p>1.1.2 Main Goals 2</p> <p>1.1.3 Why it is So Difficult to Select a Particle Sizer 2</p> <p>1.2 Particle Size Distribution 3</p> <p>1.2.1 Equivalent Diameter 3</p> <p>1.2.2 Reporting Particle Size 5</p> <p>1.2.3 Distribution Statistics 7</p> <p>1.3 Selecting a Particle Sizer 8</p> <p>1.3.1 Classification 8</p> <p>1.3.2 Selection Criteria 9</p> <p>1.4 Aspects of Some Selected Methods 13</p> <p>1.4.1 Optical Microscopy-based Methods 13</p> <p>1.4.2 Laser Light-scattering Techniques 15</p> <p>1.4.2.1 Laser Diffraction and Static Light Scattering 16</p> <p>1.4.2.2 Dynamic Light Scattering 19</p> <p>1.4.3 The Time-of-Flight Counter 20</p> <p>1.4.4 Cascade Impactor 21</p> <p>1.5 Conclusions 22</p> <p>Acknowledgements 22</p> <p>References 23</p> <p><b>2 Spectroscopic Methods in Solid-state Characterization 27<br /></b><i>Clare Strachan, Jukka Saarinen, Tiina Lipiäinen, Elina Vuorimaa-Laukkanen, Kaisa Rautaniemi, Timo Laaksonen, Marcin Skotnicki and Martin Dračínský</i></p> <p>2.1 Solid-state Structure of Particulates 27</p> <p>2.2 Spectroscopy Overview 28</p> <p>2.3 Spectroscopic Data Analysis 30</p> <p>2.3.1 Band Assignment 30</p> <p>2.3.2 Statistical Analysis 30</p> <p>2.4 Infrared Spectroscopy 35</p> <p>2.4.1 Principle 35</p> <p>2.4.2 MIR Applications 37</p> <p>2.4.3 MIR Imaging 40</p> <p>2.5 Near-infrared Spectroscopy 40</p> <p>2.5.1 Principle 40</p> <p>2.5.2 NIR Applications 41</p> <p>2.5.3 NIR Imaging 45</p> <p>2.6 Terahertz Spectroscopy 46</p> <p>2.6.1 Principle 46</p> <p>2.6.2 Terahertz Applications 48</p> <p>2.6.3 Terahertz Imaging 50</p> <p>2.7 Raman Spectroscopy 50</p> <p>2.7.1 Principle 50</p> <p>2.7.2 Raman Applications 53</p> <p>2.7.3 Raman Imaging 57</p> <p>2.8 Nonlinear Optics 59</p> <p>2.8.1 Principle 59</p> <p>2.8.2 Nonlinear Optics Applications 61</p> <p>2.8.3 Nonlinear Optical Imaging 61</p> <p>2.9 Fluorescence Spectroscopy 65</p> <p>2.9.1 Principle 65</p> <p>2.9.2 Fluorescence from Solid-state Samples 67</p> <p>2.9.3 Intrinsic Fluorophores in Solid Samples 68</p> <p>2.9.4 Fluorescence Imaging 69</p> <p>2.9.5 Fluorescence Lifetime Imaging Microscopy 70</p> <p>2.10 Solid-state Nuclear Magnetic Resonance 71</p> <p>2.10.1 The Basic Theory of NMR Spectroscopy 71</p> <p>2.10.2 Solid-state NMR Technique 72</p> <p>2.10.2.1 Dipole–Dipole Interactions 72</p> <p>2.10.2.2 Chemical Shift Anisotropy 72</p> <p>2.10.2.3 Quadrupolar Coupling 73</p> <p>2.10.2.4 Indirect Coupling 73</p> <p>2.10.2.5 Magic-angle Spinning and High-power Proton Decoupling 73</p> <p>2.10.3 Solid-state NMR Experiments 75</p> <p>2.10.3.1 Sample Preparation 75</p> <p>2.10.3.2 Cross-polarization 76</p> <p>2.10.3.3 Heteronuclear Correlation Experiments 77</p> <p>2.10.4 Pharmaceutical Applications of Solid-state NMR 77</p> <p>2.11 Conclusions 82</p> <p>References 84</p> <p><b>3 Microfluidic Analysis Techniques for Safety Assessment of Pharmaceutical Nano- and Microsystems 97<br /></b><i>Tiina M. Sikanen, Iiro Kiiski and Elisa Ollikainen</i></p> <p>3.1 Microfluidic Bioanalytical Platforms 97</p> <p>3.2 Microfabrication Methods and Materials 98</p> <p>3.3 Microfluidic Cell Cultures 101</p> <p>3.3.1 Selection of the Microfabrication Material by Design 102</p> <p>3.3.2 Additional Design Considerations 104</p> <p>3.3.3 Characterization of Pharmaceutical Nano- and Microsystems Using Organ-on-a-chip 108</p> <p>3.4 Immobilized Enzyme Microreactors for Hepatic Safety Assessment 109</p> <p>3.4.1 Nanoparticle Impacts on the Hepatic Clearance of Xenobiotics 109</p> <p>3.4.2 Cytochrome P450 Interaction Studies in Through-flow Conditions 112</p> <p>3.4.2.1 Immobilization Strategies for Cytochrome P450 Enzymes 113</p> <p>3.4.2.2 Microfabrication Materials and Design Considerations 116</p> <p>3.5 Microfluidic Total Analysis Systems 120</p> <p>3.5.1 Microfluidic Separation Systems 121</p> <p>3.5.2 Toward n-in-one Analytical Platforms 124</p> <p>3.6 Epilogue 126</p> <p>References 126</p> <p><b>4 <i>In Vitro–In Vivo </i>Correlation for Pharmaceutical Nano- and Microsystems 137<br /></b><i>Preshita P. Desai and Vandana B. Patravale</i></p> <p>4.1 Introduction 137</p> <p>4.2 <i>In Vitro </i>Dissolution and <i>In Vivo </i>Pharmacokinetics 138</p> <p>4.3 Levels of Correlation 143</p> <p>4.3.1 Level A Correlation 143</p> <p>4.3.2 Level B Correlation 144</p> <p>4.3.3 Level C Correlation 145</p> <p>4.3.4 Multiple Level C Correlation 145</p> <p>4.3.5 Level D Correlation 145</p> <p>4.4 Models of IVIVC 145</p> <p>4.4.1 Deconvolution Model 146</p> <p>4.4.2 Convolution Model 149</p> <p>4.4.3 Miscellaneous Models 149</p> <p>4.5 IVIVC Model Validation: Predictability Evaluation 150</p> <p>4.6 IVIVC Development Step-by-Step Approach 151</p> <p>4.7 Brief Introduction to Micro/Nanosystems and IVIVC Relevance 152</p> <p>4.7.1 Selection of Appropriate Dissolution Method 153</p> <p>4.7.2 Selection of Appropriate Dissolution Medium 155</p> <p>4.7.3 Selection of Appropriate IVIVC Mathematical Model 157</p> <p>4.8 Applications of IVIVC for Micro/nanoformulations 158</p> <p>4.8.1 Formulation Optimization 162</p> <p>4.8.2 Surrogate for Bioequivalence Studies and Biowaivers 165</p> <p>4.9 Softwares Used for IVIVC 165</p> <p>4.10 Conclusion and Future Prospects 166</p> <p>References 166</p> <p><b>5 Characterization of Bioadhesion, Mucin-interactions and Mucosal Permeability of Pharmaceutical Nano- and Microsystems 171<br /></b><i>Ellen Hagesaether, Malgorzata Iwona Adamczak, Marianne Hiorth and Ingunn Tho</i></p> <p>5.1 Introduction 171</p> <p>5.2 Background and Theory 172</p> <p>5.3 Mucosal Membranes 174</p> <p>5.3.1 Oral Mucosa 174</p> <p>5.3.2 Gastrointestinal Mucosa 176</p> <p>5.3.3 Pulmonary Mucosa 176</p> <p>5.3.4 Nasal Mucosa 181</p> <p>5.3.5 Ocular Mucosa 182</p> <p>5.3.6 Vaginal Mucosa 182</p> <p>5.4 Use of Mucosal Membranes in Studies of Micro- and Nanoparticles 183</p> <p>5.4.1 Diffusion Chambers 183</p> <p>5.4.2 Permeability Support for Cell-based Systems 184</p> <p>5.5 Selection of Biological Models 185</p> <p>5.5.1 Tissue-based Models 185</p> <p>5.5.2 Cell-based Models 185</p> <p>5.5.3 Mucus as Models 187</p> <p>5.5.4 Artificial Models 188</p> <p>5.6 Methods for Testing Biocompatibility 189</p> <p>5.6.1 Viability 189</p> <p>5.6.2 Cytotoxicity 189</p> <p>5.6.3 Paracellular Permeability 189</p> <p>5.7 Methods for Testing Mucoadhesion 190</p> <p>5.7.1 Atomic Force Microscopy (AFM) 190</p> <p>5.7.2 Quartz Crystal Microbalance (QCM) 191</p> <p>5.7.3 Rheology 192</p> <p>5.7.4 Rheology in Combination with Light Scattering (Rheo-SALS) 192</p> <p>5.7.5 Dynamic Light Scattering (DLS) and Zeta Potential Measurements 193</p> <p>5.7.6 Mechanical Methods 194</p> <p>5.7.7 Mucin Adsorption Study 194</p> <p>5.7.8 Wash-off Tests 194</p> <p>5.8 Methods for Testing Mucopenetration 195</p> <p>5.8.1 Fluorescent Recovery after Photobleaching (FRAP) and Multiple Image Photography (MIP) 195</p> <p>5.8.2 Permeability Studies 195</p> <p>5.8.3 Water-assisted Transport Through Mucus 196</p> <p>5.8.4 Particles with Dynamic Properties 196</p> <p>5.9 Methods for Assessing Cell Interactions 197</p> <p>5.9.1 Cell Adhesion 197</p> <p>5.9.2 Cellular Uptake 197</p> <p>5.9.3 Transcellular Transport 199</p> <p>5.10 Concluding Remarks 203</p> <p>References 203</p> <p><b>6 Cell–Nanoparticle Interactions: Toxicity and Safety Issues 207<br /></b><i>Flavia Fontana, Nazanin Zanjanizadeh Ezazi, Nayab Tahir and Helder A. Santos</i></p> <p>6.1 Introduction 207</p> <p>6.1.1 Role of Nanoparticles in Modern Medicine and Applications 207</p> <p>6.1.2 Cell–NP Interactions 208</p> <p>6.1.2.1 Size 208</p> <p>6.1.2.2 Shape 208</p> <p>6.1.2.3 Surface Charge 209</p> <p>6.1.2.4 Surface Functionalization and Hydrophobicity 210</p> <p>6.1.2.5 Protein Corona 211</p> <p>6.1.3 NP Toxicity 211</p> <p>6.2 Mechanisms of NP-Induced Cellular Toxicity 211</p> <p>6.2.1 Damage to the Plasma Membrane 211</p> <p>6.2.2 Alterations or Disruptions in the Cytoskeleton 211</p> <p>6.2.3 Mitochondrial Toxicity 216</p> <p>6.2.4 Nuclear Damage 216</p> <p>6.2.5 Reactive Oxygen Species (ROS) 216</p> <p>6.2.6 Interference in the Signaling Pathways 216</p> <p>6.3 <i>In Vitro </i>Assays to Evaluate Cell–NP Interactions 216</p> <p>6.3.1 Traditional Assays 217</p> <p>6.3.2 Innovative Assays 217</p> <p>6.4 Metal Oxide Nanoparticles 217</p> <p>6.4.1 Zinc Oxide 217</p> <p>6.4.2 Cerium Oxide 220</p> <p>6.4.3 Iron Oxide 221</p> <p>6.5 Non-metallic Nanoparticles 223</p> <p>6.5.1 Liposomes 223</p> <p>6.5.2 Polymeric Delivery Systems 224</p> <p>6.5.3 Dendrimers 230</p> <p>6.5.4 Silicon/Silica-based Drug Delivery Systems 232</p> <p>6.6 Conclusions and Future Perspectives 235</p> <p>Acknowledgements 235</p> <p>References 236</p> <p><b>7 Intestinal Mucosal Models to Validate Functionalized Nanosystems 243<br /></b><i>Cláudia Azevedo, In</i><i>ês Pereira and Bruno Sarmento</i></p> <p>7.1 Introduction 243</p> <p>7.2 Intestinal Mucosal Characteristics 244</p> <p>7.2.1 Intestinal Morphology 244</p> <p>7.2.2 Transport Mechanisms 246</p> <p>7.3 <i>In Vitro </i>Models 248</p> <p>7.3.1 Monoculture Models 249</p> <p>7.3.2 Co-culture Models 252</p> <p>7.3.2.1 The Caco-2/HT29-MTX Model 252</p> <p>7.3.2.2 The Caco-2/Raji B Model 253</p> <p>7.3.2.3 The Caco-2/HT29-MTX/Raji B Model 253</p> <p>7.3.3 3D Co-culture Models 253</p> <p>7.3.4 Gut-on-a-Chip 254</p> <p>7.4 <i>Ex Vivo </i>Intestinal Models for <i>In Vitro/In Vivo </i>Correlation of Functionalized Nanosystems 258</p> <p>7.4.1 Diffusion Chambers 258</p> <p>7.4.1.1 Ussing Chamber 258</p> <p>7.4.1.2 Franz Cell 258</p> <p>7.4.2 Everted Intestinal Sac Model 259</p> <p>7.4.3 Non-everted Intestinal Sac Model 260</p> <p>7.4.4 Everted Intestinal Ring 260</p> <p>7.5 <i>In Situ </i>Models 260</p> <p>7.5.1 Intestinal Perfusion 262</p> <p>7.5.2 Intestinal Loop 264</p> <p>7.5.3 Intestinal Vascular Cannulation 264</p> <p>7.6 <i>In Vivo </i>Models 264</p> <p>7.7 Conclusion 265</p> <p>Acknowledgements 266</p> <p>References 267</p> <p><b>8 Biodistribution of Polymeric, Polysaccharide and Metallic Nanoparticles 275<br /></b><i>Nazl</i><i>𝚤 Erdo</i><i>ğar, Gamze Varan, Cem Varan and Erem Bilensoy</i></p> <p>8.1 Introduction 275</p> <p>8.2 Biodistribution and Pharmacokinetics 276</p> <p>8.3 Mechanisms Affecting Biodistribution 277</p> <p>8.3.1 Nanoparticle Properties 277</p> <p>8.3.1.1 Effect of Particle Size 277</p> <p>8.3.1.2 Effect of Surface Charge 279</p> <p>8.3.1.3 Effect of Particle Shape 280</p> <p>8.3.2 Dosing and Toxicity 281</p> <p>8.3.3 Effect of Coating 282</p> <p>8.4 Conclusion 285</p> <p>References 286</p> <p><b>9 Opportunities and Challenges of Silicon-based Nanoparticles for Drug Delivery and Imaging 291<br /></b><i>Didem </i><i>Şen Karaman, Martti Kaasalainen, Helene Kettiger and Jessica M. Rosenholm</i></p> <p>9.1 Synthesis and Characteristics of Silica-based Nanoparticles 292</p> <p>9.1.1 Nonporous Silica NPs 292</p> <p>9.1.2 Mesoporous Silica NPs 295</p> <p>9.1.3 Core@Shell Materials 297</p> <p>9.1.4 Hollow Silica Nanoparticles 298</p> <p>9.1.5 Porous Silicon (PSi) 300</p> <p>9.2 Solid-state Characterization 303</p> <p>9.2.1 Porosity and Morphology on the Nanoscale 303</p> <p>9.2.2 Structural Analysis 305</p> <p>9.2.3 Methods for Determination of Surface Functionalization 306</p> <p>9.3 Medium-dependent Characterization 307</p> <p>9.3.1 Hydrodynamic Size 307</p> <p>9.3.1.1 Dynamic Light Scattering 309</p> <p>9.3.2 Surface Charge and Zeta Potential 309</p> <p>9.3.3 Colloidal Stability 311</p> <p>9.3.4 Challenges in Particularly Porous Nanoparticle Characterization 312</p> <p>9.4 Incorporation of Active Molecules 314</p> <p>9.4.1 Drug Loading 314</p> <p>9.4.2 Labeling with Imaging Agents 317</p> <p>9.5 Biorelevant Physicochemical Characterization 319</p> <p>9.5.1 Biodegradation/Dissolution of Silica 321</p> <p>9.5.2 Biocompatibility and Nano–Bio Interactions 323</p> <p>9.5.3 Drug Release 324</p> <p>9.5.4 Label-free (Imaging) Technologies 326</p> <p>9.6 Conclusions 328</p> <p>References 329</p> <p><b>10 Statistical Analysis and Multidimensional Modeling in Research 339<br /></b><i>Osmo Antikainen</i></p> <p>10.1 Measurement in Research 339</p> <p>10.2 Mean and Sample Mean 339</p> <p>10.3 Correlation 341</p> <p>10.4 Modeling Relationships Between Series of Observations 343</p> <p>10.5 Quality of a Model 344</p> <p>10.5.1 The Meaning of <i>R</i><sup>2</sup> in Linear Regression 344</p> <p>10.5.2 Cross-validation 345</p> <p>10.6 Multivariate Data 350</p> <p>10.6.1 Screening Designs 351</p> <p>10.6.2 Full Factorial Designs 352</p> <p>10.6.2.1 Full Factorial Designs in Two Levels 352</p> <p>10.6.2.2 Full Factorial Designs in Three Levels (3<i><sup>n</sup> </i>Design) 355</p> <p>10.7 Principal Component Analysis (PCA) 362</p> <p>10.8 Conclusions 366</p> <p>References 366</p> <p>Index 369</p>
<p><b>Leena Peltonen</b> is Adjunct Professor in the Division of Pharmaceutical Chemistry and Technology at the University of Helsinki, Finland. She holds two master's degrees, as well as a PhD in Pharmacy that she obtained in 2001.</p>
<p><b>Characterization of Pharmaceutical Nano- and Microsystems</b> <p><b>Learn about the analytical tools used to characterize particulate drug delivery systems with this comprehensive overview</b> <p>Edited by a leading expert in the field, <i>Characterization of Pharmaceutical Nano- and Microsystems</i> provides a complete description of the analytical techniques used to characterize particulate drug systems on the micro- and nanoscale. <p>The book offers readers a full understanding of the basic physicochemical characteristics, material properties and differences between micro- and nanosystems. It explains how and why greater experience and more reliable measurement techniques are required as particle size shrinks, and the measured phenomena grow weaker. <p><i>Characterization of Pharmaceutical Nano- and Microsystems</i> deals with a wide variety of topics relevant to chemical and solid-state analysis of drug delivery systems, including drug release, permeation, cell interaction, and safety. It is a complete resource for those interested in the development and manufacture of new medicines, the drug development process, and the translation of those drugs into life-enriching and lifesaving medicines. <p><i>Characterization of Pharmaceutical Nano- and Microsystems</i> covers all of the following topics: <ul> <li>An introduction to the analytical tools applied to determine particle size, morphology, and shape</li> <li>Common chemical approaches to drug system characterization</li> <li>A description of solid-state characterization of drug systems</li> <li>Drug release and permeation studies</li> <li>Toxicity and safety issues</li> <li>The interaction of drug particles with cells</li> </ul> <p>Perfect for pharmaceutical chemists and engineers, as well as all other industry professionals and researchers who deal with drug delivery systems on a regular basis, <i>Characterization of Pharmaceutical Nano- and Microsystems</i> also belongs on bookshelves of interested students and faculty who interact with this topic.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €