Details

CO2 as a Building Block in Organic Synthesis


CO2 as a Building Block in Organic Synthesis


1. Aufl.

von: Shoubhik Das

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 16.09.2020
ISBN/EAN: 9783527821969
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to the fascinating application of CO<sub>2</sub> as a building block in organic synthesis</b></p> <p>This important book explores modern organic synthesis’ use of the cheap, non-toxic and abundant chemical CO<sub>2</sub>as an attractive C1 building block. With contributions from an international panel of experts, <i>CO<sub>2</sub> as a Building Block in Organic Synthesis</i> offers a review of the most important reactions which use CO<sub>2</sub> as a building block in organic synthesis.</p> <p>The contributors examine a wide-range of CO<sub>2</sub> reactions including methylation reactions, CH bond functionalization, carboxylation, cyclic carbonate synthesis, multicomponent reactions, and many more. The book reviews the most recent developments in the field and also:</p> <ul> <li>Presents the most important reactions like CH-bond functionalization, carboxylation, carbonate synthesis and many more</li> <li>Contains contributions from an international panel of experts</li> <li>Offers a comprehensive resource for academics and professionals in the field</li> </ul> <p>Written for organic chemists, chemists working with or on organometallics, catalytic chemists, pharmaceutical chemists, and chemists in industry, <i>CO<sub>2</sub> as Building Block in Organic Synthesis</i> contains an analysis of the most important reactions which use CO<sub>2</sub> as an effective building block in organic synthesis.</p>
<p><b>1 Photochemical and Substrate‐Driven CO<sub>2</sub> Conversion 1<br /></b><i>Bart Limburg, Cristina Maquilon, and Arjan W. Kleij</i></p> <p>1.1 Introduction 1</p> <p>1.2 Iodine Activation of (Homo)Allylic Substrates 3</p> <p>1.3 Substrate Activation Via Radical Addition/Photochemical Oxidation Processes 9</p> <p>1.4 Substrate‐Induced Activation of Oxiranes 12</p> <p>1.5 Substrate‐Involved Activation of Oxetanes and Azetidines 21</p> <p>1.6 Concluding Remarks 21</p> <p>References 22</p> <p><b>2 C–H Carboxylations with CO<sub>2</sub> 29<br /></b><i>Uttam Dhawa, Isaac Choi, and Lutz Ackermann</i></p> <p>2.1 Introduction 29</p> <p>2.2 Transition‐Metal‐Catalyzed C–H Carboxylation 30</p> <p>2.2.1 Copper‐Catalyzed C–H Carboxylation 30</p> <p>2.2.2 Cobalt‐Catalyzed C–H Carboxylation 36</p> <p>2.2.3 Nickel‐Catalyzed C–H Carboxylation 36</p> <p>2.2.4 Molybdenum‐Catalyzed C–H Carboxylation 38</p> <p>2.2.5 Ruthenium‐Catalyzed C–H Carboxylation 38</p> <p>2.2.6 Rhodium‐Catalyzed C–H Carboxylation 39</p> <p>2.2.7 Palladium‐Catalyzed C–H Carboxylation 41</p> <p>2.2.8 Silver‐Catalyzed C–H Carboxylation 42</p> <p>2.2.9 Iridium‐Catalyzed C–H Carboxylation 45</p> <p>2.2.10 Gold‐Catalyzed C–H Carboxylation 45</p> <p>2.2.11 Neodymium‐Catalyzed C–H Carboxylation 45</p> <p>2.3 Metal‐Free C–H Carboxylation 46</p> <p>2.3.1 Base‐Mediated C–H Carboxylation 46</p> <p>2.3.2 Electro‐Catalyzed C–H Carboxylation 49</p> <p>2.3.3 Lewis Acid‐Mediated Carboxylation 49</p> <p>2.3.4 Light‐Driven Carboxylation 50</p> <p>2.4 CO<sub>2</sub> Carboxylation Promoted by Transition Metal Complexes 52</p> <p>2.5 Conclusions 53</p> <p>References 53</p> <p><b>3 Transition‐Metal‐Catalyzed C–H Carboxylation 59<br /></b><i>Joaquim Caner and Nobuharu Iwasawa</i></p> <p>3.1 Introduction 59</p> <p>3.2 Direct C–H Carboxylation of Electron‐Deficient Arenes and (Hetero) Arenes Catalyzed by Basic Complexes 59</p> <p>3.3 Direct Carboxylation of Inert Csp2─H Bonds 66</p> <p>3.3.1 Rhodium‐Catalyzed C–H Carboxylation Reactions 66</p> <p>3.3.2 Palladium‐Catalyzed C–H Carboxylation Reactions 76</p> <p>3.4 Direct Carboxylation of Csp3─H Bonds 85</p> <p>3.5 Summary and Outlook 89</p> <p>References 90</p> <p><b>4 Fixation of CO<sub>2</sub> in Organic Molecules with Heterogeneous Catalysts 95<br /></b><i>Dongcheng He, Hongli Wang, and Feng Shi</i></p> <p>4.1 Introduction 95</p> <p>4.2 CO<sub>2</sub> Cycloaddition to Epoxide 96</p> <p>4.2.1 Oxides 96</p> <p>4.2.2 Zeolite Catalysts 97</p> <p>4.2.3 Supported Nanoparticle and Lewis Acid Catalysts 98</p> <p>4.2.4 Carbon and Its Derivatives 99</p> <p>4.2.5 Salen, Porphyrin, and Phthalocyanine Catalyst 101</p> <p>4.2.6 Ionic Liquid Catalyst 103</p> <p>4.2.7 Metal−Organic Framework (MOF) Catalyst 108</p> <p>4.2.8 Bifunctional Catalyst 112</p> <p>4.2.9 Other Catalysts 120</p> <p>4.3 Reactions of Aziridines and CO<sub>2</sub> 120</p> <p>4.4 Reactions of Polyalcohols/Olefins and CO<sub>2</sub> 121</p> <p>4.5 Reaction of Propargyl Alcohols/Propargyl Amines and CO<sub>2</sub> 124</p> <p>4.6 Reactions of Terminal Alkynes and CO<sub>2</sub> 125</p> <p>4.7 Formylation of Amines and CO<sub>2</sub> 127</p> <p>4.8 Methylation of Amines and CO<sub>2</sub> 130</p> <p>4.9 Other Reactions of Amines and CO<sub>2</sub>131</p> <p>4.10 Hydroformylation of CO<sub>2</sub> and Olefins into Alcohols 133</p> <p>4.11 Reactions of Aromatic Halides and CO<sub>2</sub> 134</p> <p>4.12 Reactions of 2‐Aminobenzonitriles and CO<sub>2</sub> 136</p> <p>4.13 Conclusions 137</p> <p>References 138</p> <p><b>5 CO<sub>2</sub> Fixation into Organic Molecules via Carbon–Heteroatom Bond Formation 155<br /></b><i>Yu‐Nong Li, Hong‐Ru Li and Liang‐Nian He</i></p> <p>5.1 Introduction 155</p> <p>5.2 CO2 Conversion with C<b>─</b>N Bond Formation 157</p> <p>5.2.1 Synthesis of Oxazolidinones 157</p> <p>5.2.1.1 Oxazolidinone Synthesis from Aziridine and CO<sub>2</sub> 158</p> <p>5.2.1.2 Oxazolidinone Synthesis from Olefin, a Nitrogen Source, and CO<sub>2</sub> 163</p> <p>5.2.1.3 Oxazolidinone Synthesis from Amino Alcohols and CO<sub>2</sub> 164</p> <p>5.2.1.4 Oxazolidinone Synthesis from Carboxylative Cyclization of Propargyl Amines with CO<sub>2</sub> 165</p> <p>5.2.1.5 Oxazolidinone Synthesis from Propargyl Alcohol, Aliphatic Amines/2‐Aminoethanols, and CO<sub>2</sub> 167</p> <p>5.2.1.6 Photoinduced Radical‐Initiated Carboxylative Cyclization of Allyl Amines with CO<sub>2</sub> 170</p> <p>5.2.2 Synthesis of Isocyanates and Linear Carbamates 172</p> <p>5.2.3 Synthesis of Urea Derivatives 174</p> <p>5.2.4 Synthesis of Quinazolines 175</p> <p>5.3 CO<sub>2</sub> Conversion with C─O Bond Formation 178</p> <p>5.3.1 Synthesis of Cyclic Carbonates 178</p> <p>5.3.1.1 Cyclic Carbonate Synthesis from Epoxide and CO<sub>2</sub> 178</p> <p>5.3.1.2 α‐Alkylidene Cyclic Carbonate Synthesis from Carboxylative Cyclization of Propargyl Alcohols with CO<sub>2</sub> 181</p> <p>5.3.1.3 Cyclic Carbonate Synthesis from Carboxylative Cyclization of 1,2‐Diols with CO<sub>2</sub> 182</p> <p>5.3.1.4 One‐Pot Stepwise Synthesis of Cyclic Carbonates Directly from Olefins or Vicinal Halohydrins with CO<sub>2</sub> 183</p> <p>5.3.2 Synthesis of Linear Carbonates 185</p> <p>5.4 CO<sub>2</sub> Conversion with C─S Bond Formation 187</p> <p>5.4.1 Synthesis of Dithioacetals 187</p> <p>5.4.2 Synthesis of Benzothiazolones 188</p> <p>5.4.3 Synthesis of Benzothiazoles 189</p> <p>5.5 Carbon–Heteroatom Bond Formation from the Captured CO<sub>2</sub> or CO<sub>2 </sub>Derivatives 190</p> <p>5.6 Conclusions 191</p> <p>Abbreviations 192</p> <p>References 193</p> <p><b>6 Carbonyl‐Ene Reactions of Alkenes with Carbon Dioxide 199<br /></b><i>Yasuyuki Mori and Masanari Kimura</i></p> <p>6.1 Introduction 199</p> <p>6.2 Carbonyl‐Ene Reactions of Alkenes with CO<sub>2</sub> 199</p> <p>6.2.1 Organoaluminum and Pyridine Derivative‐Mediated Coupling Reaction 199</p> <p>6.2.2 Light‐Induced Copper‐Catalyzed Carboxylation of Allylic C─H Bonds 204</p> <p>6.2.3 Copper and Aluminum Ate Compound System for Carboxylation of Allylic C─H Bond of Alkenes 208</p> <p>6.2.4 Cobalt‐Catalyzed Carboxylation of Allylic C─H Bond of Terminal Alkenes 212</p> <p>6.2.5 Nickel‐Catalyzed Carbonyl‐ene‐Type Reaction of Terminal Alkenes with CO<sub>2</sub> 217</p> <p>References 223</p> <p><b>7 Recent Advances in Electrochemical Carboxylation of Organic Compounds for CO<sub>2</sub> Valorization 225<br /></b><i>Luca Dell’Amico, Marcella Bonchio, and Xavier Companyo</i></p> <p>7.1 Introduction 225</p> <p>7.2 Electrochemical Carboxylation of Unsaturated Compounds 228</p> <p>7.3 Electrochemical Carboxylation of Organic Halides 236</p> <p>7.4 Stereoselective Electrochemical Carboxylations 245</p> <p>7.5 Conclusions 249</p> <p>References 250</p> <p><b>8 Photocatalysis as a Powerful Tool for the Utilization of CO<sub>2</sub> in Organic Synthesis 253<br /></b><i>Daniel Riemer and Shoubhik Das</i></p> <p>8.1 Key Intermediate Involving Substrate with Late‐Stage CO<sub>2</sub> Addition/Insertion 254</p> <p>8.1.1 Unsaturated Substrates 254</p> <p>8.1.2 Aryl Halides 264</p> <p>8.1.3 Benzylic C─H Bonds 267</p> <p>8.2 CO2 Substrate Adduct as the Key Intermediate 269</p> <p>8.3 CO2 Radical Anion as a Key Intermediate 276</p> <p>8.4 Hydroxycarbonyl Radical as a Key Intermediate 282</p> <p>8.5 Conclusion and Outlook 284</p> <p>References 285</p> <p><b>9 Direct Carboxylation of Alkenes and Alkynes 291<br /></b><i>Martin Pichette Drapeau, Johannes Schranck, and Anis Tlili</i></p> <p>9.1 Introduction 291</p> <p>9.2 Carboxylation of Alkenes 291</p> <p>9.2.1 Stoichiometric Carboxylation of Alkenes 291</p> <p>9.2.2 Catalytic Hydrocarboxylation of Alkenes 295</p> <p>9.2.3 Photoinduced Hydrocarboxylation of Alkenes 300</p> <p>9.2.4 Difunctionalization of Alkenes with Carbon Dioxide 304</p> <p>9.3 Carboxylation of Alkynes 305</p> <p>9.3.1 Carboxylation of Terminal Alkynes 305</p> <p>9.3.1.1 Synthesis of Propiolic Esters 305</p> <p>9.3.1.2 Synthesis of Propiolic Acids 308</p> <p>9.3.2 Synthesis of Acrylic Acid Derivatives 316</p> <p>9.3.2.1 Hydrocarboxylation 316</p> <p>9.3.2.2 Alkyl‐ and Arylcarboxylations 321</p> <p>9.3.2.3 Sila‐ and Boracarboxylations 323</p> <p>9.3.3 Carboxylation Leading to Cyclization Products 324</p> <p>9.4 Conclusions 326</p> <p>References 327</p> <p><b>10 Homogeneous Iron Catalysts for the Synthesis of Useful Molecules from CO<sub>2 </sub>331<br /></b><i>Francesco Della Monica and Carmine Capacchione</i></p> <p>10.1 Introduction 331</p> <p>10.2 Reductive Processes 332</p> <p>10.2.1 Hydrogenation 332</p> <p>10.2.2 Hydrosilylation and Hydroboration 335</p> <p>10.2.3 Mechanistic Details 336</p> <p>10.3 Nonreductive Processes 337</p> <p>10.3.1 Cyclic Organic Carbonates and Aliphatic Polycarbonates from CO<sub>2 </sub>and Epoxides 337</p> <p>10.3.2 Mechanistic Details 346</p> <p>10.3.3 Stereochemistry of Cyclic Organic Carbonates 354</p> <p>10.3.4 Oxazolidinones 358</p> <p>10.4 Conclusions 360</p> <p>References 360</p> <p><b>11 NHC‐catalyzed CO<sub>2</sub> Fixations in Organic Synthesis 367<br /></b><i>Vishakha Goyal, Naina Sarki, Anand Narani, and Kishore Natte</i></p> <p>11.1 Introduction 367</p> <p>11.2 Direct C–H Activation with CO<sub>2</sub> 369</p> <p>11.2.1 C–H Activation of Terminal Alkynes 369</p> <p>11.2.2 Carboxylation of Arenes and Heteroarenes 373</p> <p>11.2.3 Carboxylation of Alkenes and Organoboronic Esters 376</p> <p>11.3 Oxidation of Aldehydes with CO<sub>2 </sub>376</p> <p>11.4 Cyclization Reactions with CO<sub>2</sub> 379</p> <p>11.4.1 Synthesis of Cyclic Carbonates from CO<sub>2</sub> and Epoxides 379</p> <p>11.4.2 Cyclization of CO<sub>2</sub> in Presence of NHC–CO<sub>2</sub> Adducts 380</p> <p>11.4.3 Cyclization of CO<sub>2</sub> in Presence of Metal NHCs Complexes 382</p> <p>11.4.4 Cyclization of Propargylic Amines 385</p> <p>11.5 Alkylation with CO<sub>2</sub> 387</p> <p>11.5.1 N‐methylation 387</p> <p>11.5.2 N‐formylation 388</p> <p>11.6 Miscellaneous 390</p> <p>11.7 Summary 393</p> <p>References 393</p> <p><b>12 Silver‐Catalyzed CO<sub>2</sub> Fixation 397<br /></b><i>Kodai Saito and Tohru Yamada</i></p> <p>12.1 Introduction 397</p> <p>12.2 Historical Background of Carbon Dioxide Fixation into Organosilver Complexes 398</p> <p>12.3 Carboxylation of Terminal Alkynes 399</p> <p>12.4 Cascade Carboxylative Cyclization 404</p> <p>12.5 Silver‐Catalyzed Sequential Carboxylative Cyclization of Propargyl Alcohols 405</p> <p>12.6 Synthesis of Cyclic Carbonate 405</p> <p>12.7 Catalytic Asymmetric Synthesis of Cyclic Carbonate 411</p> <p>12.8 Three‐Component Reaction of Propargyl Alcohols, Carbon Dioxide, and Nucleophiles 411</p> <p>12.9 CO<sub>2</sub>‐Mediated Transformation of Propargyl Alcohols 412</p> <p>12.10 Transformation of Amine Derivatives 417</p> <p>12.11 Cascade Carboxylation and Cyclization of Unsaturated Amine Derivatives 417</p> <p>12.11.1 Benzoxazine‐2‐one from <i>o</i>‐Alkynylaniline and Carbon Dioxide 418</p> <p>12.11.2 Cascade Carboxylation – Addition to Allenes 418</p> <p>12.11.3 Three‐Component Reaction of Carbon Dioxide, Amines, and Aryloxyallens 419</p> <p>12.12 Domino Carboxylation – Cyclization – Migration of Unsaturated Amines 421</p> <p>12.12.1 Carboxylation Involving C-C Bond Formation – Sequential Cyclization 423</p> <p>12.12.2 Carboxylation of Enolate – Sequential Cyclization 423</p> <p>12.12.3 Carbon Dioxide Incorporation Reaction Using Other Carbanions 427</p> <p>12.13 Carboxylation of Arylboronic Esters 428</p> <p>12.13.1 Functionalization of Terminal Epoxides 431</p> <p>12.14 Conclusion 432</p> <p>References 433</p> <p>Index 437</p>
Dr. Shoubhik Das in an independant group leader at the Georg-August-University of Goettingen, Germany since 2015. He has studied in India and finished his MSc from IIT Kharagpur in 2006. Subsequently, he moved to UK to join GlaxoSmithKline. In 2008, he started his PhD under the supervision of Prof. Matthias Beller at Leibniz Institut für Katalyse, Germany. In 2011, he finished his PhD and joined the research group of Prof. Matthew J. Gaunt as a post-doctoral research associate at University of Cambridge. In 2013, Dr. Das moved to EPFL, Switzerland and joined the group of Prof. Paul J. Dyson as a scientist. <br>

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €