Details

Handbook of Bioplastics and Biocomposites Engineering Applications


Handbook of Bioplastics and Biocomposites Engineering Applications


2. Aufl.

von: Inamuddin, Tariq Altalhi

188,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 21.11.2022
ISBN/EAN: 9781119160151
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Handbook of Bioplastics and Biocomposites Engineering Applications</b> <p><b>The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries.</b> <p>Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO<sub>2</sub> emissions. <p>The 30 chapters in the<i> Handbook of Bioplastics and Biocomposites Engineering Applications</i> discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated. <p><b>Audience</b> <p>The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.
<p>Preface xxi</p> <p><b>Part I: Bioplastics, Synthesis and Process Technology 1</b></p> <p><b>1 An Introduction to Engineering Applications of Bioplastics 3<br /> </b><i>Andreea Irina Barzic</i></p> <p>1.1 Introduction 3</p> <p>1.2 Classification of Bioplastics 4</p> <p>1.3 Physical Properties 5</p> <p>1.3.1 Rheological Properties 5</p> <p>1.3.2 Optical Properties 6</p> <p>1.3.3 Mechanical and Thermal Properties 7</p> <p>1.3.4 Electrical Properties 7</p> <p>1.4 Applications of Bioplastics in Engineering 8</p> <p>1.4.1 Bioplastics Applications in Sensors 8</p> <p>1.4.2 Bioplastics Applications in Energy Sector 10</p> <p>1.4.3 Bioplastics Applications in Bioengineering 12</p> <p>1.4.4 Bioplastics Applications in “Green” Electronics 13</p> <p>1.5 Conclusions 16</p> <p>Acknowledgement 17</p> <p>Dedication 17</p> <p>References 17</p> <p><b>2 Biobased Materials: Types and Sources 23<br /> </b><i>Kushairi Mohd Salleh, Amalia Zulkifli, Nyak Syazwani Nyak Mazlan and Sarani Zakaria</i></p> <p>2.1 Introduction 23</p> <p>2.2 Biodegradable Biobased Material 25</p> <p>2.2.1 Polysaccharides 25</p> <p>2.2.2 Starch 26</p> <p>2.2.3 Polylactic Acid 28</p> <p>2.2.4 Cellulose 29</p> <p>2.2.5 Esters 30</p> <p>2.2.6 Ether 31</p> <p>2.2.7 Chitosan 32</p> <p>2.2.8 Alginate 33</p> <p>2.2.9 Proteins 35</p> <p>2.2.10 Gluten 36</p> <p>2.2.11 Gelatine 37</p> <p>2.2.12 Casein 38</p> <p>2.2.13 Lipid 39</p> <p>2.2.14 Polyhydroxyalkanoates (PHA) 40</p> <p>2.3 Nonbiodegradable Biobased Material 41</p> <p>2.3.1 Polyethylene (PE) 41</p> <p>2.3.2 Polyethylene Terephthalate (PET) 42</p> <p>2.3.3 Polyamide (PA) 43</p> <p>2.4 Conclusion 44</p> <p>Acknowledgment 45</p> <p>References 45</p> <p><b>3 Bioplastic From Renewable Biomass 49<br /> </b><i>N.B. Singh, Anindita De, Saroj K. Shukla and Mridula Guin</i></p> <p>3.1 Introduction 49</p> <p>3.2 Plastics and Bioplastics 50</p> <p>3.2.1 Plastics 50</p> <p>3.2.2 Bioplastics 51</p> <p>3.3 Classification of Bioplastics 51</p> <p>3.4 Bioplastic Production 53</p> <p>3.4.1 Biowaste to Bioplastic 53</p> <p>3.4.1.1 Lipid Rich Waste 53</p> <p>3.4.2 Milk Industry Waste 54</p> <p>3.4.3 Sugar Industry Waste 54</p> <p>3.4.4 Spent Coffee Beans Waste 55</p> <p>3.4.5 Bioplastic Agro-Forestry Residue 55</p> <p>3.4.6 Bioplastic from Microorganism 56</p> <p>3.4.7 Biomass-Based Polymers 57</p> <p>3.4.7.1 Biomass-Based Monomers for Polymerization Process 57</p> <p>3.5 Characterization of Bioplastics 58</p> <p>3.6 Applications of Bioplastics 60</p> <p>3.6.1 Food Packaging 60</p> <p>3.6.2 Agricultural Applications 60</p> <p>3.6.3 Biomedical Applications 63</p> <p>3.7 Bioplastic Waste Management Strategies 65</p> <p>3.7.1 Recycling of Poly(Lactic Acid) (PLA) 65</p> <p>3.7.1.1 Mechanical Recycling of PLA 65</p> <p>3.7.1.2 Chemical Recycling of PLA 65</p> <p>3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) 67</p> <p>3.7.3 Landfill 68</p> <p>3.7.4 Incineration 68</p> <p>3.7.5 Composting 68</p> <p>3.7.6 Anaerobic Digestion 68</p> <p>3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) 69</p> <p>3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) 69</p> <p>3.8 Conclusions and Future Prospects 70</p> <p>References 71</p> <p><b>4 Modeling of Natural Fiber-Based Biocomposites 81<br /> </b><i>Fatima-Zahra Semlali Aouragh Hassani, Mounir El Achaby, Abou el Kacem Qaiss and Rachid Bouhfid</i></p> <p>4.1 Introduction 81</p> <p>4.2 Generality of Biocomposites 82</p> <p>4.2.1 Natural Matrix 83</p> <p>4.2.2 Natural Reinforcement 84</p> <p>4.2.3 Natural Fiber Classification 84</p> <p>4.2.4 Biocomposites Processing 85</p> <p>4.2.4.1 Extrusion and Injection 85</p> <p>4.2.4.2 Compression Molding 86</p> <p>4.2.5 RTM-Resin Transfer Molding 86</p> <p>4.2.6 Hand Lay-Up Technique 86</p> <p>4.3 Parameters Affecting the Biocomposites Properties 87</p> <p>4.3.1 Fiber’s Aspect Ratio 87</p> <p>4.3.2 Fiber/Matrix Interfacial Adhesion 88</p> <p>4.3.3 Fibers Orientation and Dispersion 89</p> <p>4.3.3.1 Short Fibers Orientation 89</p> <p>4.3.3.2 Fiber’s Orientation in Simple Shear Flow 90</p> <p>4.3.3.3 Fiber’s Orientation in Elongational Flow 90</p> <p>4.4 Process Molding of Biocomposites 92</p> <p>4.4.1 Unidirectional Fibers 93</p> <p>4.4.1.1 Classical Laminate Theory 93</p> <p>4.4.1.2 Rule of Mixture 93</p> <p>4.4.1.3 Halpin-Tsai Model 95</p> <p>4.4.1.4 Hui-Shia Model 95</p> <p>4.4.2 Random Fibers 96</p> <p>4.4.2.1 Hirsch Model 96</p> <p>4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) 97</p> <p>4.4.2.3 Tsai-Pagano Model 97</p> <p>4.5 Conclusion 97</p> <p>References 98</p> <p><b>5 Process Modeling in Biocomposites 103<br /> </b><i>Joy Hoskeri H., Nivedita Pujari S. and Arun K. Shettar</i></p> <p>5.1 Introduction 103</p> <p>5.2 Biopolymer Composites 104</p> <p>5.2.1 Natural Fiber-Based Biopolymer Composites 104</p> <p>5.2.2 Applications of Biopolymer Composites 105</p> <p>5.2.3 Properties of Biopolymer Composites 107</p> <p>5.3 Classification of Biocomposites 108</p> <p>5.3.1 PLA Biocomposites 109</p> <p>5.3.2 Nanobiocomposites 109</p> <p>5.3.3 Hybrid Biocomposites 109</p> <p>5.3.4 Natural Fiber-Based Composites 109</p> <p>5.4 Process Modeling of Biocomposite Models 110</p> <p>5.4.1 Compression Moulding 110</p> <p>5.4.2 Injection Moulding 111</p> <p>5.4.3 Extrusion Method 112</p> <p>5.5 Formulation of Models 112</p> <p>5.5.1 Types of Model 113</p> <p>5.6 Conclusion 113</p> <p>References 115</p> <p><b>6 Microbial Technology in Bioplastic Production and Engineering 121<br /> </b><i>Dileep Francis and Deepu Joy Parayil</i></p> <p>6.1 Introduction 121</p> <p>6.2 Fundamental Principles of Microbial Bioplastic Production 123</p> <p>6.3 Bioplastics Obtained Directly from Microorganisms 125</p> <p>6.3.1 Pha 125</p> <p>6.3.2 Poly (γ-Glutamic Acid) (PGA) 129</p> <p>6.4 Bioplastics from Microbial Monomers 130</p> <p>6.4.1 Bioplastics from Aliphatic Monomers 130</p> <p>6.4.1.1 Pla 130</p> <p>6.4.1.2 Poly (Butylene Succinate) 133</p> <p>6.4.1.3 Biopolyamides (Nylons) 134</p> <p>6.4.1.4 1, 3-Propanediol (PDO) 137</p> <p>6.4.2 Bioplastics from Aromatic Monomers 137</p> <p>6.5 Lignocellulosic Biomass for Bioplastic Production 138</p> <p>6.6 Conclusion 140</p> <p>References 140</p> <p><b>7 Synthesis of Green Bioplastics 149<br /> </b><i>J.E. Castanheiro, P.A. Mourão and I. Cansado</i></p> <p>7.1 Introduction 149</p> <p>7.2 Bioplastic 150</p> <p>7.2.1 Polyhydroxyalkanoates (PHAs) 150</p> <p>7.2.2 Poly(lactic acid) (PLA) 151</p> <p>7.2.3 Cellulose 152</p> <p>7.2.4 Starch 153</p> <p>7.3 Renewable Raw Material to Produce Bioplastic 153</p> <p>7.3.1 Raw Material from Agriculture 153</p> <p>7.3.2 Organic Waste as Resources for Bioplastic Production 153</p> <p>7.3.3 Algae as Resources for Bioplastic Production 153</p> <p>7.3.4 Wastewater as Resources for Bioplastic Production 154</p> <p>7.4 Bioplastics Applications 155</p> <p>7.4.1 Food Industry 155</p> <p>7.4.2 Agricultural Applications 156</p> <p>7.4.3 Medical Applications 156</p> <p>7.4.4 Other Applications 156</p> <p>7.5 Conclusions 156</p> <p>References 157</p> <p><b>8 Natural Oil-Based Sustainable Materials for a Green Strategy 161<br /> </b><i>Figen Balo, Berrak Aksakal , Lutfu S. Sua and Zeliha Mahmat</i></p> <p>8.1 Introduction 161</p> <p>8.2 Methodology 164</p> <p>8.2.1 Entropy Methodology 165</p> <p>8.2.2 Copras Methodology 167</p> <p>8.3 Conclusions 171</p> <p>References 172</p> <p><b>Part II: Applications of Bioplastics in Health and Hygiene 175</b></p> <p><b>9 Biomedical Applications of Bioplastics 177<br /> </b><i>Syed Tareq, Jaison Jeevanandam, Caleb Acquah and Michael K. Danquah</i></p> <p>9.1 Introduction 177</p> <p>9.2 Synthesis of Bioplastics 180</p> <p>9.2.1 Starch-Based Bioplastics 181</p> <p>9.2.2 Cellulose-Based Bioplastics 181</p> <p>9.2.3 Chitin and Chitosan 181</p> <p>9.2.4 Polyhydroxyalkanoates (PHA) 181</p> <p>9.2.5 Polylactic Acid (PLA) 182</p> <p>9.2.6 Bioplastics from Microalgae 182</p> <p>9.3 Properties of Bioplastics 183</p> <p>9.3.1 Material Strength 183</p> <p>9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic 184</p> <p>9.4 Biological Properties of Bioplastics 184</p> <p>9.5 Biomedical Applications of Bioplastics 185</p> <p>9.5.1 Antimicrobial Property 185</p> <p>9.5.2 Biocontrol Agents 187</p> <p>9.5.3 Pharmaceutical Applications of Bioplastics 187</p> <p>9.5.4 Implantation 188</p> <p>9.5.5 Tissue Engineering Applications 189</p> <p>9.5.6 Memory Enhancer 189</p> <p>9.6 Limitations 190</p> <p>9.7 Conclusion 191</p> <p>References 191</p> <p><b>10 Applications of Bioplastics in Hygiene Cosmetic 199<br /> </b><i>Anuradha and Jagvir Singh</i></p> <p>10.1 Introduction 199</p> <p>10.2 The Need to Find an Alternative to Plastic 200</p> <p>10.3 Bioplastics 201</p> <p>10.3.1 Characteristic of Bioplastics 201</p> <p>10.3.2 Types (Classification) 202</p> <p>10.3.3 Uses of Bioplastics 202</p> <p>10.4 Resources of Bioplastic 202</p> <p>10.4.1 Polysaccharides 202</p> <p>10.4.2 Starch or Amylum 202</p> <p>10.4.3 Cellulose 203</p> <p>10.4.3.1 Source of Cellulose 204</p> <p>10.5 Use of Biodegradable Materials in Packaging 204</p> <p>10.6 Bionanocomposite 204</p> <p>10.7 Hygiene Cosmetic Packaging 206</p> <p>10.8 Conclusion 206</p> <p>References 207</p> <p><b>11 Biodegradable Polymers in Drug Delivery 211<br /> </b><i>Ariane Regina Souza Rossin, Fabiana Cardoso Lima, Camila Cassia Cordeiro, Erica Fernanda Poruczinski, Josiane Caetano and Douglas Cardoso Dragunski</i></p> <p>11.1 Introduction 211</p> <p>11.2 Biodegradable Polymer (BP) 212</p> <p>11.2.1 Natural 212</p> <p>11.2.1.1 Polysaccharides 213</p> <p>11.2.1.2 Proteins 214</p> <p>11.2.2 Synthetic 214</p> <p>11.2.2.1 Polyesters 215</p> <p>11.2.2.2 Polyanhydrides 215</p> <p>11.2.2.3 Polycarbonates 216</p> <p>11.2.2.4 Polyphosphazenes 216</p> <p>11.2.2.5 Polyurethanes 216</p> <p>11.3 Device Types 217</p> <p>11.3.1 Three-Dimensional Printing Devices 217</p> <p>11.3.1.1 Implants 217</p> <p>11.3.1.2 Tablets 217</p> <p>11.3.1.3 Microneedles 218</p> <p>11.3.1.4 Nanofibers 218</p> <p>11.3.2 Nanocarriers 218</p> <p>11.3.2.1 Nanoparticles 218</p> <p>11.3.2.2 Dendrimers 219</p> <p>11.3.2.3 Hydrogels 219</p> <p>11.4 Applications 219</p> <p>11.4.1 Intravenous 219</p> <p>11.4.2 Transdermal 220</p> <p>11.4.3 Oral 221</p> <p>11.4.4 Ocular 221</p> <p>11.5 Existing Materials in the Market 221</p> <p>11.6 Conclusions and Future Projections 222</p> <p>References 223</p> <p><b>12 Microorganism-Derived Bioplastics for Clinical Applications 229<br /> </b><i>Namrata Sangwan, Arushi Chauhan, Jitender Singh and Pramod K. Avti</i></p> <p>12.1 Introduction 229</p> <p>12.2 Types of Bioplastics 231</p> <p>12.2.1 Poly(3-hydroxybutyrate) (PHB) 231</p> <p>12.2.2 Polyhydroxyalkanoate 232</p> <p>12.2.3 Poly-Lactic Acid 233</p> <p>12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) 234</p> <p>12.2.5 Poly (ԑ-caprolactone) (PCL) 235</p> <p>12.3 Properties of Bioplastics 235</p> <p>12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics 236</p> <p>12.3.1.1 Polylactic Acid 236</p> <p>12.3.1.2 Poly Lactic-co-Glycolic Acid 236</p> <p>12.3.1.3 Polycaprolactone 237</p> <p>12.3.1.4 Polyhydroxyalkanoates 237</p> <p>12.3.1.5 Polyethylene Glycol (PEG) 238</p> <p>12.4 Applications 238</p> <p>12.4.1 Tissue Engineering 238</p> <p>12.4.2 Drug Delivery System 240</p> <p>12.4.3 Implants and Prostheses 242</p> <p>12.5 Conclusion 244</p> <p>References 245</p> <p><b>13 Biomedical Applications of Biocomposites Derived From Cellulose 251<br /> </b><i>Subhajit Kundu, Debarati Mitra and Mahuya Das</i></p> <p>13.1 Introduction 251</p> <p>13.2 Importance of Cellulose in the Field of Biocomposite 252</p> <p>13.3 Classification of Cellulose 252</p> <p>13.4 Synthesis of Cellulose in Different Form 253</p> <p>13.4.1 Mechanical Extraction 253</p> <p>13.4.2 Electrochemical Method 254</p> <p>13.4.3 Chemical Extraction 254</p> <p>13.4.4 Enzymatic Hydrolysis 254</p> <p>13.4.5 Bacterial Production of Cellulose 256</p> <p>13.5 Formation of Biocomposite Using Different Form of Cellulose 256</p> <p>13.6 Biocomposites Derived from Cellulose and Their Application 258</p> <p>13.6.1 Tissue Engineering 259</p> <p>13.6.2 Wound Dressing 260</p> <p>13.6.3 Drug Delivery 262</p> <p>13.6.4 Dental Applications 263</p> <p>13.6.5 Other Applications 264</p> <p>13.7 Conclusion 265</p> <p>References 266</p> <p><b>14 Biobased Materials for Biomedical Engineering 275<br /> </b><i>Ioana Duceac, Fulga Tanasă, Mărioara Nechifor and Carmen-Alice Teacă</i></p> <p>14.1 Introduction 275</p> <p>14.2 Biomaterials 277</p> <p>14.3 Biobased Materials for Implants and Tissue Engineering 279</p> <p>14.3.1 Skin Tissue Engineering and Wound Dressings 280</p> <p>14.3.2 Bone Tissue Engineering 282</p> <p>14.3.3 Cartilage Tissue Engineering 284</p> <p>14.3.4 Ligament and Tendon Implants and Tissue Engineering 285</p> <p>14.3.5 Cardiovascular Implants and Tissue Engineering 285</p> <p>14.3.5.1 Valve Implants 285</p> <p>14.3.5.2 Artificial Heart/Cardiac Patches 286</p> <p>14.3.5.3 Vascular Grafts and TE 286</p> <p>14.3.6 Liver Tissue Engineering and Bioreactors 287</p> <p>14.3.7 Kidney Tissue Engineering and Dialysis Devices 288</p> <p>14.3.8 Nervous Tissue Engineering and Implants 288</p> <p>14.4 Auxiliary Materials 289</p> <p>14.5 Conclusion and Future Trends 291</p> <p>References 292</p> <p><b>15 Applications of Bioplastics in Sports and Leisure 299<br /> </b><i>Radhika Malkar, Sneha Kagale, Sakshi Chavan, Manishkumar Tiwari and Pravin Patil</i></p> <p>15.1 Introduction 299</p> <p>15.1.1 Plastic Pollution Due to Leisure and Sports Industries 300</p> <p>15.1.2 Bioplastics: Overview and Classification 301</p> <p>15.1.2.1 Biobased Nonbiodegradable 302</p> <p>15.1.2.2 Biobased, Biodegradable 303</p> <p>15.1.2.3 Fossil-Based, Biodegradable 304</p> <p>15.2 Bioplastic in Leisure 305</p> <p>15.2.1 Camping 305</p> <p>15.2.2 Eyewear 305</p> <p>15.2.3 Toys 306</p> <p>15.2.4 Electronic Equipment and Other 307</p> <p>15.3 Bioplastic in Sports 307</p> <p>15.3.1 Shoes and Sneakers 307</p> <p>15.3.2 Ski Boots 308</p> <p>15.3.3 Snow Goggles 309</p> <p>15.3.4 Surfboards and Surfskates 309</p> <p>15.3.5 Sportscar 309</p> <p>15.3.6 Football, Baseball, Basketball, Soccer Ball, and Volleyball 310</p> <p>15.3.7 Hockey 311</p> <p>15.4 Conclusion 312</p> <p>References 312</p> <p><b>16 Biocomposites in Active and Intelligent Food Packaging Applications 317<br /> </b><i>Ru Wei Teoh, Yin Yin Thoo and Adeline Su Yien Ting</i></p> <p>16.1 Introduction 317</p> <p>16.2 Advances in Biocomposite Application in Active and Intelligent Food Packaging 319</p> <p>16.2.1 Antimicrobial and Antioxidant Properties in Active Food Packaging 319</p> <p>16.2.2 Gaseous Scavenging Activity in Active Food Packaging 320</p> <p>16.2.3 Freshness and Food Quality Detection in Intelligent Food Packaging 321</p> <p>16.3 Biocomposites Incorporated with Natural Compounds 322</p> <p>16.3.1 Plant Extracts 323</p> <p>16.3.2 Essential Oils 327</p> <p>16.3.3 Enzymes and Bacteriocins 333</p> <p>16.3.4 Challenges in Food Packaging Applications of Biocomposites Integrated With Natural Compounds 333</p> <p>16.4 Biocomposites Incorporated with Inorganic Materials 337</p> <p>16.4.1 Metal Compounds 337</p> <p>16.4.2 Clay and Silicate-Based Mineral Compounds 340</p> <p>16.4.3 Challenges in Food Packaging Applications of Biocomposites Integrated with Inorganic Materials 344</p> <p>16.5 Biocomposites Incorporated with Natural Food Colorants and Pigments 344</p> <p>16.5.1 Intelligent Food Packaging with Natural Food Colorants and Pigments 347</p> <p>16.5.2 Potential of Natural Food Colorants and Pigments as Active and Intelligent Food Packaging 347</p> <p>16.5.3 Challenges in Food Packaging Applications of Biocomposites Integrated with Natural Food Colorants and Pigments 348</p> <p>16.6 Conclusion 348</p> <p>References 349</p> <p><b>17 Biofoams for Packaging Applications 361<br /> </b><i>Vinod V.T. Padil</i></p> <p>17.1 Introduction 361</p> <p>17.2 Biofoams from Botanical and Plant Sources 362</p> <p>17.3 Starch and Their Blends 363</p> <p>17.4 Cellulose-Based Biofoams for Packaging Application 365</p> <p>17.5 Packaging Foams from Animal-Based Polysaccharides 365</p> <p>17.6 Seaweed-Based Biofoams 366</p> <p>17.7 Polylactic Acid 367</p> <p>17.8 Tree Gum-Based Foams 368</p> <p>17.9 Karaya Gum-Based Foams 369</p> <p>17.10 Kondagogu Gum-Based Foams 370</p> <p>17.11 Microbial Gum-Based Packaging Foams 371</p> <p>17.12 Conclusion and Outlooks 375</p> <p>References 375</p> <p><b>18 Biobased and Biodegradable Packaging Plastics for Food Preservation 383<br /> </b><i>Carolina Caicedo, Alma Berenice Jasso-Salcedo, Lluvia de Abril Alexandra Soriano-Melgar, Claudio Alonso Díaz-Cruz, Enrique Javier Jiménez-Regalado and Rocio Yaneli Aguirre-Loredo</i></p> <p>18.1 Introduction 383</p> <p>18.2 Sources for Obtaining Polymers 384</p> <p>18.2.1 Polymers Extracted from Natural Sources 384</p> <p>18.2.2 Biopolymers Synthesized by Microorganisms 391</p> <p>18.2.3 Biopolymers Obtained by Chemical Synthesis 394</p> <p>18.3 Additives in Packaging Materials 395</p> <p>18.3.1 Natural Origin 395</p> <p>18.3.2 Synthetic Origin 398</p> <p>18.4 Active Packaging 398</p> <p>18.4.1 Antioxidants in Biobased Active Packaging 399</p> <p>18.4.2 Active Packaging Biobased with Antimicrobial Agents 401</p> <p>18.5 Smart Packaging 405</p> <p>18.5.1 Indicators 405</p> <p>18.5.2 Biosensors 405</p> <p>18.6 Functional Properties of Biobased Packaging and Their Effect on Food Preservation 406</p> <p>18.6.1 Physical and Mechanical Properties 406</p> <p>18.6.2 Susceptibility to Moisture 407</p> <p>18.6.3 Gas Barrier 408</p> <p>18.7 Current State of the Biobased Packaging Market 410</p> <p>18.8 Prospects for Food Packaging and the Use of Biobased Materials 412</p> <p>References 412</p> <p><b>19 Bioplastics-Based Nanocomposites for Packaging Applications 425<br /> </b><i>Xiaoying Zhao and Yael Vodovotz</i></p> <p>19.1 Introduction 425</p> <p>19.2 Bioplastic-Based Nanocomposites 428</p> <p>19.2.1 PLA Bionanocomposites 428</p> <p>19.2.2 PHA Bionanocomposites 430</p> <p>19.2.3 Starch Bionanocomposites 432</p> <p>19.2.4 PBS Bionanocomposites 434</p> <p>19.3 Packaging Applications 436</p> <p>19.4 Safety Issue and Regulations 437</p> <p>19.5 Conclusions 438</p> <p>References 439</p> <p><b>20 Applications of Bioplastics in Disposable Products 445<br /> </b><i>Mahrukh Aslam, Habibullah Nadeem, Farrukh Azeem, Muhammad Zubair, Ijaz Rasul, Saima Muzammil, Muhammad Afzal and Muhammad Hussnain Siddique</i></p> <p>20.1 Introduction 445</p> <p>20.2 Plastics vs Bioplastics 446</p> <p>20.2.1 Minimum Utilization of Energy 447</p> <p>20.2.2 Reduction of Carbon Footprint 447</p> <p>20.2.3 Environment Friendly 447</p> <p>20.2.4 Littering Minimization 447</p> <p>20.2.5 Not Usage of Crude Oil 447</p> <p>20.3 Types of Bioplastics 447</p> <p>20.3.1 Starch-Based 447</p> <p>20.3.2 Cellulose-Based 448</p> <p>20.3.3 Protein-Based 448</p> <p>20.3.4 Bioderived Polyethylene 448</p> <p>20.3.5 Aliphatic Polyesters 449</p> <p>20.4 Applications of Bioplast 449</p> <p>20.4.1 Medical Applications 449</p> <p>20.4.2 Wound Dressing Application 449</p> <p>20.4.3 Drug Delivery Application 450</p> <p>20.4.4 Agricultural Applications 450</p> <p>20.4.5 3D Printing 450</p> <p>20.4.6 Applications in Packaging Industry 451</p> <p>20.4.7 Bioremediation Applications 452</p> <p>20.4.8 Biofuel Applications 452</p> <p>20.5 Conclusion 453</p> <p>References 453</p> <p><b>21 Bioplastic-Based Nanocomposites for Smart Materials 457<br /> </b><i>Marya Raji, Abdellah Halloub, Abou el Kacem Qaiss and Rachid Bouhfid</i></p> <p>21.1 Introduction 457</p> <p>21.2 Biopolymer 458</p> <p>21.2.1 Natural Polymers 458</p> <p>21.2.2 Synthetic Polymers 460</p> <p>21.3 Biopolymer-Based Nanocomposites 461</p> <p>21.4 Bioplastics-Based Nanocomposites for Smart Materials 463</p> <p>21.5 Physical Stimuli-Responsive Biopolymer 464</p> <p>21.6 Chemical Stimuli-Responsive Biopolymers 464</p> <p>21.7 Biological Stimuli-Responsive Biopolymers 465</p> <p>21.8 Conclusion 466</p> <p>References 467</p> <p><b>Part III: Industrial Application, Sustainability and Recycling of Bioplastics 471</b></p> <p><b>22 Applications of Biobased Composites in Optical Devices 473<br /> </b><i>Reshmy R., Vaisakh P.H., Eapen Philip, Parameswaran Binod, Aravind Madavan, Mukesh Kumar Awasthi, Ashok Pandey and Raveendran Sindhu</i></p> <p>22.1 Introduction 473</p> <p>22.2 Characteristics and Advantages of Biobased Composites in Optical Devices 475</p> <p>22.3 Polysaccharide-Based Biocomposite 477</p> <p>22.3.1 Cellulose 478</p> <p>22.3.2 Chitin 480</p> <p>22.3.3 Alginate 481</p> <p>22.4 Protein-Based Biocomposite 481</p> <p>22.4.1 Silk 482</p> <p>22.4.2 Collagen 483</p> <p>22.4.3 Gelatin 483</p> <p>22.5 Polynucleotides and Carbonized-Based Biocomposite 484</p> <p>22.5.1 DNA Origami 484</p> <p>22.5.2 Carbon Nanomaterials 486</p> <p>22.6 Future Trends and Perspective 487</p> <p>22.7 Conclusion 487</p> <p>References 488</p> <p><b>23 Biocomposites and Bioplastics in Electrochemical Applications 491<br /> </b><i>Sema Aslan and Derya Bal Altuntaş</i></p> <p>23.1 Introduction 491</p> <p>23.2 Electrochemistry 492</p> <p>23.2.1 General Aspects 492</p> <p>23.3 Nanomaterials in Biocomposite Applications 492</p> <p>23.4 Electrochemical Applications 493</p> <p>23.4.1 Biosensors 493</p> <p>23.4.2 Sensors 501</p> <p>23.4.3 Corrosion 502</p> <p>23.4.4 Energy Applications 503</p> <p>23.5 Conclusion 506</p> <p>References 507</p> <p><b>24 Biofibers and Their Composites for Industrial Applications 513<br /> </b><i>Meshude Akbulut Söylemez, Kemal Özer and Demet Ozer</i></p> <p>24.1 Introduction 513</p> <p>24.2 Types of Biofibers 514</p> <p>24.2.1 Seed Fibers 516</p> <p>24.2.2 Leaf Fibers 518</p> <p>24.2.3 Bast Fibers 519</p> <p>24.2.4 Stalk Fibers 521</p> <p>24.3 Chemical and Physical Modification of Biofibers as Reinforcing Materials for Biocomposites 521</p> <p>24.3.1 Chemical Treatment Processes 522</p> <p>24.3.1.1 Alkalization 522</p> <p>24.3.1.2 Silanization 523</p> <p>24.3.1.3 Acetylation 525</p> <p>24.3.1.4 Benzoylation 527</p> <p>24.3.2 Physical Treatment Processes 527</p> <p>24.3.2.1 Plasma Treatment 527</p> <p>24.3.2.2 Ultrasound Treatment 528</p> <p>24.3.2.3 Ultraviolet Treatment 529</p> <p>24.4 Biofiber Composites for Industrial Applications 529</p> <p>24.5 Challenges and Perspectives for Future Research 532</p> <p>24.6 Conclusion 533</p> <p>References 534</p> <p><b>25 Bioplastics and Biocomposites in Flame-Retardant Applications 539<br /> </b><i>L. Magunga, M. Mohapi, A. Kaleni, S. Magagula, M.J. Mochane and M.T. Motloung</i></p> <p>25.1 Introduction 539</p> <p>25.2 A Brief Introduction to Bioplastics and Biocomposites 541</p> <p>25.3 Flame Retardants Used in Polymer Materials 545</p> <p>25.4 Action Mechanisms of Flame Retardants 554</p> <p>25.4.1 Char-Formation 556</p> <p>25.4.2 Inet Gas 556</p> <p>25.4.3 Contact of Chemicals 557</p> <p>25.4.4 Restriction of Vapor Phase Burning 557</p> <p>25.5 Compatibility of Flame Retardants With Polymer Matrices 557</p> <p>25.6 Preparation of Flame-Retardant Biocomposites and Bioplastics 559</p> <p>25.7 Applications of Flame-Retardant Bioplastics and Biocomposites 561</p> <p>25.8 Conclusions 566</p> <p>Acknowledgements 567</p> <p>References 567</p> <p><b>26 Biobased Thermosets for Engineering Applications 575<br /> </b><i>Bhargavi Koneru, Jhilmil Swapnalin, Hanumanthrayappa Manjunatha and Prasun Banerjee</i></p> <p>26.1 Introduction 575</p> <p>26.2 Sustainable Covalently Bonded Polyamides are Produced by Polycondensing a Naturally Present Functionalized Carboxyl Group (Citric Acid) with 1, 8-Octane Diol 576</p> <p>26.3 Biodegradable Crosslinked Polyesters by Polycondensation of a Naturally Occurring Citric Acid and Glycerol 577</p> <p>26.4 Sugar-Based Lactones to Produce Degradable Dimethacrylates 578</p> <p>26.5 Water Facilitated, Naturally Produced Difunctional or Trifunctional Carboxyl Groups and Epoxidized Sucrose Soyate Are Made (With Sugars and Soybean Oil Lipids) 580</p> <p>26.5.1 Learning More About the Significance of Water in the Curing Process 580</p> <p>26.6 Isosorbide Was Employed as a Bridge in an Adhesive System After Being Introduced Into a Carbonyl Group 581</p> <p>26.7 Thermoplastic Polymers Based on a Spiro Diacetyl Trigger Generated From Lignin 583</p> <p>26.8 Properties of Epoxy Resin Thermosets With Acetal Addition 583</p> <p>26.8.1 Mechanical Properties 583</p> <p>26.8.2 Thermal Properties 583</p> <p>26.9 Conclusions 584</p> <p>Acknowledgements 584</p> <p>References 584</p> <p><b>27 Public Attitude Toward Recycling Routes of Bioplastics—Knowledge on Sustainable Purchase 589<br /> </b><i>Farhan Shaikh and Sunny Kumar</i></p> <p>27.1 Introduction 589</p> <p>27.2 Production of Plastics 590</p> <p>27.3 Application of Bioplastics 591</p> <p>27.4 Recycle Route of Bioplastics 592</p> <p>27.5 Public Contribution of Recycling 592</p> <p>27.6 Awareness of Sustainable Purchase 596</p> <p>27.7 Conclusion 598</p> <p>References 599</p> <p><b>28 Applications of Bioplastic in Composting Bags and Planting Pots 605<br /> </b><i>Sonica Sondhi</i></p> <p>28.1 Introduction 605</p> <p>28.2 Biodegradable Pots (Biopots) 607</p> <p>28.2.1 Plantable Pots 608</p> <p>28.2.2 Composting Bags 608</p> <p>28.3 Biodegradable Planting Pots 609</p> <p>28.3.1 Biodegradable Planting Pots Based on Pressed Fibers 609</p> <p>28.3.2 Biodegradable Planting Pots Based on Bioplastics 610</p> <p>28.3.3 Biopots Based on Industry and Agriculture 611</p> <p>28.4 Growth and Quality of Plants in Biopots 613</p> <p>28.5 Future Trends and Challenges 614</p> <p>28.6 Conclusion 614</p> <p>References 615</p> <p><b>29 Bioplastics, Biocomposites and Biobased Polymers—Applications and Innovative Approaches for Sustainability 619<br /> </b><i>V. P. Sharma, Anurag Singh, Neha Srivastava, Prachi Srivastava and Inamuddin</i></p> <p>29.1 Introduction 620</p> <p>29.2 Characteristics of Biobased Polymers 621</p> <p>29.3 Biobased Polymers and Bioplastics Sustainability 621</p> <p>29.4 Biodegradation and Standardization of Bioplastics and Biobased Polymers 622</p> <p>29.4.1 Standard EN 13432 622</p> <p>29.4.2 Standards for Oxodegradation 622</p> <p>29.4.3 Australasian Bioplastics Association 623</p> <p>29.4.4 Australian Packaging Covenant Organization 623</p> <p>29.5 Application of Bioplastics, Biocomposites, and Biobased Polymers 623</p> <p>29.5.1 Application in Medicine 623</p> <p>29.5.2 Application in Packaging 624</p> <p>29.5.3 Application in Agriculture 624</p> <p>29.5.4 Other Applications 625</p> <p>29.6 Conclusion 625</p> <p>References 626</p> <p><b>30 Recycling of Bioplastics: Mechanism and Economic Benefits 629<br /> </b><i>Nadia Akram, Muhammad Saeed, Muhammad Usman, Tanveer Hussain Bokhari, Akbar Ali and Zunaira Shafiq</i></p> <p>30.1 Overview of Popular Bioplastics 629</p> <p>30.1.1 Starch-Based Bioplastics 630</p> <p>30.1.2 Cellulose-Based Bioplastic 631</p> <p>30.1.3 Polylactic Acid (PLA)-Based Bioplastics 631</p> <p>30.1.4 Polyhydroxy Alkanoate-Based Bioplastics (PHA) 631</p> <p>30.1.5 Organic Polyethylene 632</p> <p>30.1.6 Protein-Based Bioplastics 632</p> <p>30.1.7 Drop-In Bioplastics 632</p> <p>30.1.8 Fossil Fuel-Based Bioplastics 632</p> <p>30.2 Recycling of Bioplastics 633</p> <p>30.2.1 Background of Bioplastics Recycling 633</p> <p>30.2.2 Options of Recycling 634</p> <p>30.2.3 Generation of Energy From Recycling Process 634</p> <p>30.3 Types of Recycling 636</p> <p>30.3.1 Mechanical Recycling 636</p> <p>30.3.1.1 Method of Mechanical Recycling 636</p> <p>30.3.1.2 Mechanical Recycling Mechanism 636</p> <p>30.3.1.3 Mechanical Recycling in Landscape 637</p> <p>30.3.1.4 Sorting 637</p> <p>30.3.2 Chemical Recycling 638</p> <p>30.3.2.1 Solvent Purification 638</p> <p>30.3.2.2 Chemical Depolymerization 638</p> <p>30.3.2.3 Thermal Depolymerization 639</p> <p>30.3.2.4 Benefits of Chemical Recycling 639</p> <p>30.3.3 Textile Fibers Recycling Through MR or CR 639</p> <p>30.3.4 Recycled Polyester From Plastic Bottles 639</p> <p>30.3.5 Significance of Recycling 640</p> <p>30.3.5.1 Significance of MR 640</p> <p>30.3.5.2 Significance of CR 641</p> <p>30.4 Economic Aspects of Bioplastic Recycling Industry 641</p> <p>30.4.1 New Market and Economic Benefits 642</p> <p>30.4.2 Disadvantages of Biodegradable Plastics for Economy 643</p> <p>30.4.2.1 Usage of Specific Disposal Procedure 643</p> <p>30.4.2.2 Metallic Contamination 643</p> <p>30.4.2.3 Environmental Cooperation for Disposal 644</p> <p>30.4.2.4 High Capital Cost 644</p> <p>30.4.2.5 Usage of Cropland to Produce Items 644</p> <p>30.4.2.6 Marine Pollution Problems 644</p> <p>30.4.2.7 Guarantee of Net Savings 644</p> <p>30.5 Conclusion 645</p> <p>References 645</p> <p>Index 649</p>
<p><b>Inamuddin, PhD</b>, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia, and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in the multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has published about 190 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Tariq Altalhi, PhD,</b> is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his doctorate from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material. He also researches natural extracts and their application in the generation of value-added products such as nanomaterials.
<p><b>The 2nd edition of this successful Handbook explores the extensive and growing applications made with bioplastics and biocomposites for the packaging, automotive, biomedical, and construction industries.</b> <p>Bioplastics are materials that are being researched as a possible replacement for petroleum-based traditional plastics to make them more environmentally friendly. They are made from renewable resources and may be naturally recycled through biological processes, conserving natural resources and reducing CO<sub>2</sub> emissions. <p>The 30 chapters in the<i> Handbook of Bioplastics and Biocomposites Engineering Applications</i> discuss a wide range of technologies and classifications concerned with bioplastics and biocomposites with their applications in various paradigms including the engineering segment. Chapters cover the biobased materials; recycling of bioplastics; biocomposites modeling; various biomedical and engineering-based applications including optical devices, smart materials, cosmetics, drug delivery, clinical, electrochemical, industrial, flame retardant, sports, packaging, disposables, and biomass. The different approaches to sustainability are also treated. <p><b>Audience</b> <p>The Handbook will be of central interest to engineers, scientists, and researchers who are working in the fields of bioplastics, biocomposites, biomaterials for biomedical engineering, biochemistry, and materials science. The book will also be of great importance to engineers in many industries including automotive, biomedical, construction, and food packaging.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €