Details

Handbook of Condensation Thermoplastic Elastomers


Handbook of Condensation Thermoplastic Elastomers


1. Aufl.

von: Stoyko Fakirov

368,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 12.05.2006
ISBN/EAN: 9783527606894
Sprache: englisch
Anzahl Seiten: 643

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Reporting on the work of an international team of scientists actively involved in the study of thermoplastic elastomers (TPE) based on polyesters, polyamides, and polyurethanes, this book is the first to provide a detailed description of condensation TPE with close attention paid to polyamide-based systems. Reflecting the increasing importance of TPE as engineering plastics, the authors discuss the widened application opportunities by preparing systems with various chemical compositions and molecular structures as (semi-) interpenetrating networks. The contents also cover the chemical aspects, physical structure and properties, life cycle assessment, and recycling possibilities as well as such unique "smart" properties like the shape memory effect of the three classes of thermoplastic elastomers.
<p><b>Part I Introduction</b></p> <p><b>Chapter 1 Creation and Development of Thermoplastic Elastomers, and Their Position Among Organic Materials<br /></b><i>E. Maréchal</i></p> <p>1. Birth and development of TPEs: a brief survey 3</p> <p>2. Main routes to thermoplastic elastomer preparation 5</p> <p>2.1. Living anionic polymerization 6</p> <p>2.2. Living cationic polymerization 6</p> <p>2.3. Controlled radical polymerization 7</p> <p>2.4. Polycondensation and polyaddition 7</p> <p>2.5. Chemical modification and grafting 8</p> <p>2.6. Preparation by blending 9</p> <p>2.7. Preparation by dynamic vulcanization 9</p> <p>3. Techniques used in the characterization of TPEs 10</p> <p>3.1. Chromatography 10</p> <p>3.2. Spectrometric techniques 11</p> <p>3.3. Scattering techniques 12</p> <p>3.4. Microscopies 13</p> <p>3.5. Controlled degradation 13</p> <p>3.6. Thermal techniques 13</p> <p>4. Properties and processing of TPEs 14</p> <p>4.1. Injection molding 14</p> <p>4.2. Compression molding 14</p> <p>4.3. Extrusion 14</p> <p>4.4. Blow processings 15</p> <p>4.5. Thermoforming 15</p> <p>4.6. Reactive processings 15</p> <p>4.7. Degradation in processing 15</p> <p>5. Position of TPEs among organic materials and their applications 15</p> <p>6. Future trends 18</p> <p>References 20</p> <p><b>Chapter 2 Polycondensation Reactions in Thermoplastic Elastomer Chemistry: State of the Art, Trends, and Future Developments<br /></b><i>E. Maréchal</i></p> <p>1. Introduction 33</p> <p>2. Preparation of block copolymers by polycondensation. A critical review 34</p> <p>2.1. General considerations 34</p> <p>2.2. Direct polycondensation of α,ω-difunctional oligomers 34</p> <p>2.3. Polycondensation of an α,ω-difunctional oligomer with the precursors of another block 38</p> <p>2.4. Oligomer-coupling reactions 42</p> <p>2.5. Characterization techniques. Side reactions 46</p> <p>3. New structures 50</p> <p>3.1. Block copolymers containing liquid crystalline structures 50</p> <p>3.2. Liquid crystalline sequences as part of the backbone 50</p> <p>3.3. Liquid crystalline sequences as side chains 52</p> <p>3.4. Metallo-supramolecular block copolymers 55</p> <p>3.5. Block copolymers prepared from metal-containing macrocycles 58</p> <p>3.6. The use of microorganisms 62</p> <p>4. Conclusions 64</p> <p>References 66</p> <p><b>Part II Polyester-Based Thermoplastic Elastomers<br /></b></p> <p><b>Chapter 3 Polyester Thermoplastic Elastomers: Synthesis, Properties, and Some Applications<br /></b><i>Z. Roslaniec</i></p> <p>1. Introduction 77</p> <p>2. Chemical structure of polyester elastomers 78</p> <p>3. Poly(alkylene oxide) flexible segment-based polyester elastomers 79</p> <p>4. Modified poly(butylene terephthalate) rigid segment-based polyester elastomers 80</p> <p>5. Branched polyester elastomers 83</p> <p>6. Synthesis of poly(ether ester) block copolymers 84</p> <p>7. Other multiblock polyester elastomers 89</p> <p>8. Polyester thermoplastic elastomers from blends 99</p> <p>9. A new processing aspect: weldability of polyester elastomers 100</p> <p>10. Polyester elastomers for biomedical application 101</p> <p>11. Conclusions and outlook 105</p> <p>References 106</p> <p><b>Chapter 4 Terpoly(Ester-<i>b</i>-Ether-<i>b</i>-Amide) Thermoplastic Elastomers: Synthesis, Structure, and Properties<br /></b><i>R. Ukielski</i></p> <p>1. Introduction 117</p> <p>2. Chemical structure of terpoly(ester-<i>b</i>-ether-<i>b</i>-amide)s 118</p> <p>3. Synthesis of triblock –(GT-<i>b</i>-PO4-<i>b</i>-PA)<sub>n</sub>– polymers 119</p> <p>4. Solubility of the blocks 122</p> <p>5. Structure-property relationships 122</p> <p>5.1. Thermal properties of –(4GT-<i>b</i>-PO4-<i>b</i>-PA12)<sub>n</sub>– 125</p> <p>5.2. Phase composition of terpoly(ester-b-ether-b-amide)s 133</p> <p>5.3. Mechanical properties of –(4GT-<i>b</i>-PO4-<i>b</i>-PA12)<sub>n</sub>– 134</p> <p>6. Conclusions and outlook 137</p> <p>References 139</p> <p><b>Chapter 5 High Performance Thermoplastic Aramid Elastomers: Synthesis, Properties, and Applications<br /></b><i>H. Yamakawa, H. Miyata</i></p> <p>1. Introduction 141</p> <p>2. Development of thermoplastic aramid elastomers 142</p> <p>3. Type I poly(aramid-b-polyether) elastomers 143</p> <p>3.1. Synthesis of reactive aramid compounds 143</p> <p>3.2. Synthesis of aramid elastomers 143</p> <p>3.3. Thermal properties 147</p> <p>3.4. Mechanical properties 150</p> <p>3.5. Dynamic-mechanical properties 151</p> <p>3.6. Chemical properties 152</p> <p>4. Type II poly(aramid-<i>b</i>-polyether) elastomers 153</p> <p>4.1. Synthesis of reactive aramid compounds 153</p> <p>4.2. Synthesis of aramid elastomers 154</p> <p>4.3. Thermal properties 154</p> <p>4.4. Mechanical properties 154</p> <p>4.5. Chemical properties 155</p> <p>4.6. Aramid elastomers with other polyether soft segments 155</p> <p>5. Poly(aramid-<i>b</i>-polyester) elastomers 156</p> <p>5.1. Synthesis and properties of aramid-<i>b</i>-polyester elastomers 156</p> <p>5.2. A novel synthetic route to aramid-<i>b</i>-polyester elastomers 158</p> <p>6. Applications 160</p> <p>7. Conclusions 161</p> <p>References 162</p> <p><b>Chapter 6 Poly(Ether Ester) Thermoplastic Elatomers: Phase and Deformation Behavior on the Nano- and Microlevel<br /></b><i>S. Fakirov</i></p> <p>1. Introduction 167</p> <p>2. Phase behavior of PEEs 170</p> <p>2.1. Number of phases present and their miscibility 170</p> <p>2.2. Amorphous phase distribution in PEE copolymers 173</p> <p>2.3. Does crystal thickening exist in segmented and multiblock copolymers? 175</p> <p>3. Deformation behavior of PEE as revealed by small-angle X-ray scattering 177</p> <p>3.1. Effect of chain flexibility on the deformation of PET, PBT, PEE, and PBT/PEE blend 177</p> <p>3.2. Relationship between macro- and nano-deformation in PEE 182</p> <p>3.3. Chord distribution of a neat EM400 bristle 187</p> <p>4. Nanostructure evolution during the straining cycle 189</p> <p>5. Conclusions and outlook 193</p> <p>Acknowledgement 194</p> <p>References 194</p> <p><b>Chapter 7 Condensation Thermoplastic Elastomers Under Load: Methodological Studies of Nanostructure Evolution by X-ray Scattering<br /></b><i>N. Stribeck</i></p> <p>1. Introduction 197</p> <p>1.1. Phase separation 197</p> <p>1.2. “Living” nanostructure 197</p> <p>1.3. X-ray techniques in process monitoring 198</p> <p>1.4. Progress in technology and methodology 198</p> <p>2. Materials 199</p> <p>3. Basic notions 199</p> <p>3.1. Nanostructure topology 199</p> <p>3.2. Non–topological parameters 200</p> <p>3.3. Isotropic vs. anisotropic SAXS patterns 200</p> <p>3.4. Multidimensional chord distributions 201</p> <p>3.5. Longitudinal and transverse structure 202</p> <p>3.6. Void scattering 203</p> <p>4. Theoretical 203</p> <p>4.1. Basic definitions in SAXS 203</p> <p>4.2. Projections and sections 205</p> <p>4.3. Projections useful for TPEs studied under uniaxial load 206</p> <p>4.4. Correlation functions and their derivatives 207</p> <p>4.5. Data processing 209</p> <p>5. Nanostructure evolution and processes observed with condensation TPEs 210</p> <p>5.1. Poly(ether ester)s during straining 210</p> <p>5.2. Swollen and drawn poly(ether amide)s 217</p> <p>Acknowledgement 222</p> <p>References 222</p> <p><b>Chapter 8 Dielectric Relaxation of Polyester-Based Thermoplastic Elastomers<br /></b><i>T. A. Ezquerra</i></p> <p>1. Introduction 227</p> <p>2. Study of the relaxation behavior by means of dielectric spectroscopy 228</p> <p>3. Dielectric spectroscopy of poly(ether ester) thermoplastic elastomers 228</p> <p>4. Dielectric spectroscopy of multiblock thermoplastic elastomers 230</p> <p>5. Relaxation behavior of poly(ester carbonate) block copolymer across the melting region 232</p> <p>6. Conclusion 237</p> <p>Acknowledgement 237</p> <p>References 237</p> <p><b>Part III Polyamide-Based Thermoplastic Elastomers<br /></b></p> <p><b>Chapter 9 Thermoplastic Poly(Ether-<i>b</i>-Amide) Elastomers: Synthesis<br /></b><i>F. L. G. Malet</i></p> <p>1. Introduction 243</p> <p>2. Chemical structure of TPE 244</p> <p>3. Synthetic methods 245</p> <p>3.1. Polymerization in solution 245</p> <p>3.2. Interfacial polymerization 247</p> <p>3.3. Direct polycondensation using condensing agents 247</p> <p>3.4. Anionic polymerization 248</p> <p>3.5. Thermal polymerization 248</p> <p>4. Thermal polymerization of TPE-A with ester links 249</p> <p>4.1. Polymerization processes 250</p> <p>4.2. Nature of the raw materials 251</p> <p>4.3. Influence of the catalyst 253</p> <p>4.4. Influence of the molar ratio 254</p> <p>4.5. Influence of the temperature 255</p> <p>4.6. Influence of the stirring 256</p> <p>4.7. Influence of the vacuum level 256</p> <p>5. Conclusion 257</p> <p>References 257</p> <p><b>Chapter 10 Poly(Ether-<i>b</i>-Amide) Thermoplastic Elastomers: Structure, Properties, and Applications<br /></b><i>R.-P. Eustache</i></p> <p>1. Structure and characterization 263</p> <p>1.1. Crystallinity and morphology 264</p> <p>1.2. Microphase separation vs. hard and soft segment block length 269</p> <p>2. Properties 272</p> <p>2.1. Mechanical properties 273</p> <p>2.2. Physico-chemical properties 275</p> <p>2.3. Processing 276</p> <p>3. Applications 277</p> <p>3.1. Sporting goods 278</p> <p>3.2. Medicine 279</p> <p>3.3. Industry 279</p> <p>3.4. Breathable structures 279</p> <p>3.5. Fragrance carrier 279</p> <p>3.6. Polymer additives and polymer components 280</p> <p>4. Conclusions and outlook 280</p> <p>References 280</p> <p><b>Chapter 11 Semicrystalline Segmented Poly(Ether-<i>b</i>-Amide) Copolymers: Overview of Solid-State Structure-Property Relationships and Uniaxial Deformation Behavior<br /></b><i>J. P. Sheth, G. L. Wilkes</i></p> <p>1. Introduction 283</p> <p>2. PTMO-PA12 based copolymers 286</p> <p>2.1. Mechanical properties 287</p> <p>2.2. Thermal analysis 291</p> <p>2.3. Structure determination by scattering and microscopy studies 293</p> <p>2.4. Uniaxial deformation behavior 299</p> <p>3. Other poly(ether-<i>b</i>-amide) copolymers 310</p> <p>3.1. Poly(ethylene oxide)-based PEBA 310</p> <p>3.2. PEBA based on aromatic PA segments of uniform length 311</p> <p>4. Conclusion 318</p> <p>References 319</p> <p><b>Part IV Polyurethane-Based Thermoplastic Elastomers</b></p> <p><b>Chapter 12 Thermoplastic Polyurethane Elastomers in Interpenetrating Polymer Networks<br /></b><i>O. Grigoryeva, A. Fainleib, L. Sergeeva</i></p> <p>1. Introduction 327</p> <p>2. Polyurethane elastomer-based thermoplastic apparent interpenetrating polymer networks 328</p> <p>2.1. Semicrystalline polyurethane/(styrene-acrylic acid) copolymer-based thermoplastic AIPNs produced in the melt 328</p> <p>2.2. Semicrystalline polyurethane/(styrene-acrylic acid) copolymer-based thermoplastic AIPNs produced in solution 332</p> <p>2.3. Semicrystalline polyurethane/(styrene-acrylic acid) ion-containing block copolymer thermoplastic AIPNs 336</p> <p>2.4. Polyaminourethane/polyurethane ionomer-containing thermoplastic AIPNs 336</p> <p>3. Polyurethane-containing semi-IPNs 338</p> <p>3.1. Polyurethane/polyurethane semi-IPNs with miscible components 339</p> <p>3.2. Polyurethane-containing semi-IPNs with immiscible components 340</p> <p>4. Conclusions 350</p> <p>Acknowledgements 350</p> <p>References 351</p> <p><b>Chapter 13 Polyurethane Thermoplastic Elastomers Comprising Hydrazine Derivatives: Chemical Aspects<br /></b><i>Yu. Savelyev</i></p> <p>1. Introduction 355</p> <p>2. Synthesis and properties of polyurethane thermoplastic elastomers comprising hydrazine derivatives 356</p> <p>2.1. Polyurethane-semicarbazides 356</p> <p>2.2. Sulfur-containing polyurethane-semicarbazides 356</p> <p>2.3. Phosphorus-containing polyurethane-semicarbazides 357</p> <p>2.4. Ionomeric polyurethane-semicarbazides 358</p> <p>2.5. Polyurethane thermoplastic elastomers with macroheterocyclic fragments in the main chain 360</p> <p>2.6. Other hydrazine-containing polyurethane thermoplastic elastomers 362</p> <p>2.7. Polyurethane-semicarbazides and polyurethane-sulfosemicarbazides modified by transition metal β-diketonates 364</p> <p>3. Structure and performance of hydrazine-containing polyurethane thermoplastic elastomers 366</p> <p>3.1. Macrochain structure and supramolecular organization of hydrazine-containing polyurethane elastomers 366</p> <p>3.2. Behavior of hydrazine-containing polyurethane thermoplastic elastomers in the process of complex formation 371</p> <p>3.3. Biological activity of hydrazine-containing polyurethane thermoplastic elastomers 374</p> <p>4. Conclusions 377</p> <p>Acknowledgement 378</p> <p>References 378</p> <p><b>Chapter 14 Molecular Dynamics and Ionic Conductivity Studies in Polyurethane Thermoplastic Elastomers<br /></b><i>P. Pissis, G. Polizos</i></p> <p>1. Introduction 381</p> <p>2. Dielectric techniques for molecular dynamics studies 383</p> <p>2.1. Broadband dielectric spectroscopy 383</p> <p>2.2. Thermally stimulated depolarization currents techniques 386</p> <p>3. Ionic conductivity measurements and analysis 387</p> <p>4. Microphase separation and morphology of segmented polyurethanes 389</p> <p>5. Neat polyurethane thermoplastic elastomers 391</p> <p>6. Ionomers based on polyurethane thermoplastic elastomers 403</p> <p>6.1. Ionomers with ionic moieties in the hard segments 403</p> <p>6.2. Ionomers with ionic moieties in the soft segments 409</p> <p>6.3. Telechelics based on poly(ethylene oxide) 419</p> <p>7. Nanocomposites based on polyurethane thermoplastic elastomers 424</p> <p>8. Conclusions 428</p> <p>Acknowledgement 429</p> <p>References 429</p> <p><b>Part V Blends, Composites, Applications, and Recycling of Thermoplastic Elastomers</b></p> <p><b>Chapter 15 Polymer Blends Containing Thermoplastic Elastomers of the Condensation and Addition Types<br /></b><i>J. Karger-Kocsis, S. Fakirov</i></p> <p>1. Introduction 437</p> <p>1.1. General remarks 437</p> <p>1.2. Miscibility <i>vs</i>. compatibility 440</p> <p>1.3. Chemical interactions in blends of condensation polymers 440</p> <p>2. Thermoplastic blends with polycondensation elastomers 442</p> <p>2.1. Thermoplastic blends with poly(ether amide)s 442</p> <p>2.2. Thermoplastic blends with poly(ether ester) elastomers 442</p> <p>3. Thermoplastic blends with polyaddition thermoplastic elastomers 460</p> <p>4. Rubber blends with thermoplastic elastomers 463</p> <p>5. Thermoset resin blends with thermoplastic elastomers 463</p> <p>6. Summary and outlook 465</p> <p>Acknowledgements 466</p> <p>References 466</p> <p><b>Chapter 16 “Nanoreinforcement” of Thermoplastic Elastomers<br /></b><i>J. Karger-Kocsis</i></p> <p>1. Introduction 473</p> <p>2. Concepts and realization of nanosclale reinforcements 474</p> <p>3. Nanoreinforcement of thermoplastic polyurethanes 476</p> <p>3.1. <i>In situ </i>techniques 476</p> <p>3.2. Solvent-assisted methods 478</p> <p>3.3. Melt compounding 482</p> <p>4. Nanoreinforcement of “condensation” thermoplasic elastomers 484</p> <p>5. Outlook and future trends 485</p> <p>Acknowledgements 485</p> <p>References 485</p> <p><b>Chapter 17 Commercial Condensation and Addition Thermoplastic Elastomers: Composition, Properties, and Applications<br /></b><i>O. Gryshchuk</i></p> <p>1. Introduction 489</p> <p>2. Polyester-based thermoplastic elastomers (TPE-E) 490</p> <p>2.1. Hytrel® engineering thermoplastic elastomers 490</p> <p>2.2. Ecdel® engineering thermoplastic elastomers 491</p> <p>2.3. RTP® engineering thermoplastic elastomers 493</p> <p>2.4. Kopel® engineering thermoplastic elastomer 494</p> <p>2.5. Arnitel<sup>®</sup> engineering thermoplastic elastomer 494</p> <p>2.6. Keyflex<sup>®</sup> engineering thermoplastic elastomers 496</p> <p>2.7. Pibiflex<sup>®</sup> engineering thermoplastic elastomer 497</p> <p>2.8. Riteflex<sup>®</sup> engineering thermoplastic elastomers 497</p> <p>2.9. Skypel<sup>®</sup> engineering thermoplastic elastomer 499</p> <p>3. Polyamide-based thermoplastic elastomers (TPE-A) 501</p> <p>3.1. Pebax<sup>®</sup> engineering thermoplastic elastomers 501</p> <p>3.2. Vestamid<sup>®</sup> engineering thermoplastic elastomers 503</p> <p>3.3. D-RIM Nyrim<sup>®</sup> engineering thermoplastic elastomer 503</p> <p>3.4. Grilon<sup>®</sup> ELX and Grilamid<sup>®</sup> ELY engineering thermoplastic elastomers 505</p> <p>4. Polyurethane-based addition thermoplastic elastomers (TPE-U) 505</p> <p>4.1. Skythane<sup>®</sup> engineering thermoplastic elastomer 508</p> <p>4.2. Isoplast<sup>®</sup> and Pellethane<sup>®</sup> engineering thermoplastic elastomers 508</p> <p>4.3. Estane<sup>®</sup> engineering thermoplastic elastomer 509</p> <p>4.4. Texin<sup>®</sup> and Desmopan<sup>®</sup> engineering thermoplastic elastomers 511</p> <p>4.5. Avalon<sup>®</sup> and Irogran<sup>®</sup> engineering thermoplastic elastomers 511</p> <p>4.6. Elastollan<sup>®</sup> engineering thermoplastic elastomer 512</p> <p>4.7. Laripur<sup>®</sup> engineering thermoplastic elastomers 515</p> <p>4.8. Lastane<sup>®</sup> engineering thermoplastic elastomers 516</p> <p>4.9. Versollan<sup>®</sup> engineering thermoplastic elastomers 516</p> <p>4.10.Pearlstick<sup>®</sup>, Pearlthane<sup>®</sup>, Pearlcoat<sup>®</sup>, and Pearlbond<sup>®</sup> engineering thermoplastic elastomers 516</p> <p>5. Outlook 519</p> <p>References 519</p> <p><b>Chapter 18 Shape Memory Effects of Multiblock Thermoplastic Elastomers<br /></b><i>B. K. Kim, S. H. Lee, M. Furukawa</i></p> <p>1. Introduction 521</p> <p>1.1. Molecular structure requirement 522</p> <p>1.2. Shape memory programming 522</p> <p>1.3. Morphology change 524</p> <p>1.4. Elastic energy balance and entropy elasticity 525</p> <p>1.5. Shape memory polymers <i>vs</i>. alloys 526</p> <p>2. Crystalline polyester TPU 527</p> <p>2.1. Basic considerations 527</p> <p>2.2. Molecular design and synthesis of TPU 528</p> <p>2.3. Morphology and thermal properties 529</p> <p>2.4. Dynamic mechanical properties 532</p> <p>2.5. Loading in the rubbery state 533</p> <p>2.6. Loading in the glassy state 534</p> <p>3. Amorphous TPU with allophanate crosslinks 535</p> <p>3.1. Basic considerations 535</p> <p>3.2. Synthetic route 535</p> <p>3.3. Dynamic mechanical properties 537</p> <p>3.4. Melt viscosities 539</p> <p>3.5. Thermal properties 540</p> <p>3.6. Thermomechanical properties 541</p> <p>4. Amorphous TPUs based on trifunctional polyols 544</p> <p>4.1. Synthetic route 544</p> <p>4.2. Dynamic and thermomechanical properties 545</p> <p>5. Polyurethanes containing mesogenic moieties 547</p> <p>5.1. Basic considerations 547</p> <p>5.2. Thermal and thermomechanical properties 547</p> <p>6. Other thermoplastic elastomers showing shape memory effects 548</p> <p>6.1. Polymer networks with crystalline segments 548</p> <p>6.2. Polycaprolactone-polyamide block copolymers 549</p> <p>7. Shape memory blends and composites 554</p> <p>7.1. Basic considerations 554</p> <p>7.2. PVC/TPU blends 555</p> <p>7.3. Phenoxy/TPU blend 558</p> <p>7.4. Shape memory composites 560</p> <p>8. Conclusions and outlook 562</p> <p>Acknowledgements 563</p> <p>References 563</p> <p><b>Chapter 19 Condensation and Addition Thermoplastic Elastomers: Recycling Aspects<br /></b><i>T. Spychaj, M. Kacperski, A. Kozlowska</i></p> <p>1. Recycling opportunities for step-growth polymers 567</p> <p>2. Cleavage of ester, amide and urethane bonds 569</p> <p>3. Recycling of thermoplastic elastomers 570</p> <p>3.1. Recycling of polyester-based (co)polymers 570</p> <p>3.2. Recycling of polyamide-based (co)polymers 577</p> <p>3.3. Recycling of urethane polymers 582</p> <p>4. Life cycle analysis 590</p> <p>5. Summary and conclusions 592</p> <p>References 592</p> <p>Acknowledgements to previous publishers 597</p> <p>Author Index 605</p> <p>Subject Index 609</p>
"This very useful volume will be a welcome addition to the bookshelf of any serious researcher in the field of thermoplastic elastomers...In general the various contributions are comprehensive, interesting, diverse, well referenced and well written."<br> Macromolecular Chemistry and Physics<br>
Stoyko Fakirov got his MS on Chenistry from Sofia University (1959), the PhD degree (1965) from Lomonossovs`State University in Moscow, and in 1982 his DSc degree. In 1972 he became Assoc. Professor and in 1987 full Professor of polymer Chemistry. Awards and reconitions: Humboldt Fellow (1972) and Humboldt Research Award (2000), Fellow of the Ministry of Eductaion of Egypt, India, Spain, Turkey, Portugal, of JSPS (Japan), of USIA (USA), of NATO-Spain, Editorial Board member of 3 international polymer journals. He has published some 300 papers, has 11 US patents, contributed to 150 meetings and delivered more than 100 invited seminar talks world wide. He is also author or co-author, and editor or co-editor of 11 books on polymers.
Reporting on the work of an international team of scientists actively involved in the study of thermoplastic elastomers (TPE) based on polyesters, polyamides, and polyurethanes, this book is the first to provide a detailed description of condensation TPE with close attention paid to polyamide-based systems. Reflecting the increasing importance of TPE as engineering plastics, the authors discuss the widened application opportunities by preparing systems with various chemical compositions and molecular structures as (semi-) interpenetrating networks. The contents also cover the chemical aspects, physical structure and properties, life cycle assessment, and recycling possibilities as well as such unique "smart" property as the shape memory effect of the three classes of thermoplastic elastomers.

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €