Details

High Value Fermentation Products, Volume 1


High Value Fermentation Products, Volume 1

Human Health
1. Aufl.

von: Saurabh Saran, Vikash Babu, Asha Chaubey

210,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.03.2019
ISBN/EAN: 9781119460046
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Green technologies are no longer the “future” of science, but the present.  With more and more mature industries, such as the process industries, making large strides seemingly every single day, and more consumers demanding products created from green technologies, it is essential for any business in any industry to be familiar with the latest processes and technologies.  It is all part of a global effort to “go greener,” and this is nowhere more apparent than in fermentation technology. </p> <p>This book describes relevant aspects of industrial-scale fermentation, an expanding area of activity, which already generates commercial values of over one third of a trillion US dollars annually, and which will most likely radically change the way we produce chemicals in the long-term future. From biofuels and bulk amino acids to monoclonal antibodies and stem cells, they all rely on mass suspension cultivation of cells in stirred bioreactors, which is the most widely used and versatile way to produce. Today, a wide array of cells can be cultivated in this way, and for most of them genetic engineering tools are also available. Examples of products, operating procedures, engineering and design aspects, economic drivers and cost, and regulatory issues are addressed. In addition, there will be a discussion of how we got to where we are today, and of the real world in industrial fermentation. This chapter is exclusively dedicated to large-scale production used in industrial settings.</p>
<p>Foreword xvii</p> <p>About the Editors xix</p> <p>List of Contributors xxi</p> <p>Preface xxv</p> <p>Acknowledgement xxvii</p> <p><b>1 Introduction, Scope and Significance of Fermentation Technology 1<br /> </b><i>Saurabh Saran, Alok Malaviya and Asha Chaubey</i></p> <p>1.1 Introduction 1</p> <p>1.2 Background of Fermentation Technology 2</p> <p>1.3 Market of Fermentation Products 3</p> <p>1.4 Types of Fermentation 4</p> <p>1.4.1 Solid State Fermentation (SSF) 4</p> <p>1.4.2 Submerged Fermentation (SmF) 7</p> <p>1.4.3 Solid State (SSF) vs. Submerged (SmF) Fermentation 9</p> <p>1.5 Classification of Fermentation 9</p> <p>1.6 Design and Parts of Fermentors 10</p> <p>1.7 Types of Fermentor 15</p> <p>1.7.1 Stirred Tank Fermentor 15</p> <p>1.7.2 Airlift Fermentor 16</p> <p>1.7.3 Bubble Column Fermentor 17</p> <p>1.7.4 Fluidized Bed Fermentor 18</p> <p>1.7.5 Packed Bed Fermentor 19</p> <p>1.7.6 Photo Bioreactor 19</p> <p>1.8 Industrial Applications of Fermentation Technology 21</p> <p>1.9 Scope and Global Market of Fermentation Technology 22</p> <p>1.10 Conclusions 23</p> <p>References 24</p> <p><b>2 Extraction of Bioactive Molecules through Fermentation and Enzymatic Assisted Technologies 27<br /> </b><i>Ramón Larios-Cruz, Liliana Londoño-Hernández, Ricardo Gómez-García, Ivanoe García, Leonardo Sepulveda, Raúl Rodríguez-Herrera and Cristóbal N. Aguilar</i></p> <p>2.1 Introduction 27</p> <p>2.2 Definition of Bioactives Compounds 29</p> <p>2.2.1 Polyphenols and Polypeptides 29</p> <p>2.2.2 Importance and Applications of Bioactive Compounds 29</p> <p>2.2.3 Bioactive Peptides 31</p> <p>2.3 Traditional Processes for Obtaining Bioactive Compounds 33</p> <p>2.3.1 Soxhlet Extraction 33</p> <p>2.3.2 Liquid-Liquid and Solid-Liquid Extraction 34</p> <p>2.3.3 Maceration Extraction 35</p> <p>2.4 Fermentation and Enzymatic Technologies for Obtaining Bioactive Compounds 35</p> <p>2.4.1 Soft Chemistry in Bioactive Compounds 35</p> <p>2.4.2 Biotransformation of Bioactive Compounds 36</p> <p>2.4.3 Enzymatic and Fermentation Technologies 39</p> <p>2.5 Use of Agroindustrial Waste in the Fermentation Process 45</p> <p>2.5.1 Cereal Wastes 46</p> <p>2.5.2 Fruit and Plant Waste 46</p> <p>2.6 General Parameters in the Optimization of Fermentation Processes 49</p> <p>2.6.1 Response Surface Methodology 49</p> <p>2.6.2 First-Order Model 49</p> <p>2.6.3 Second-Order Model 49</p> <p>2.7 Final Comments 52</p> <p>Acknowledgements 52</p> <p>References 52</p> <p><b>3 Antibiotics Against Gram Positive Bacteria 61<br /> </b><i>Rahul Vikram Singh, Hitesh Sharma, Anshela Koul and Vikash Babu</i></p> <p>3.1 Introduction 61</p> <p>3.2 Target of Antibiotics Against Gram Positive Bacteria 64</p> <p>3.2.1 Cell Wall Synthesis Inhibition 65</p> <p>3.2.2 Protein Synthesis Inhibition 70</p> <p>3.2.3 DNA Synthesis Inhibition 72</p> <p>3.3 Antibiotics Production Processes 72</p> <p>3.4 Conclusion 75</p> <p>References 76</p> <p><b>4 Antibiotic Against Gram-Negative Bacteria 79<br /> </b><i>Maryam Faiyaz, Shikha Gupta and Divya Gupta</i></p> <p>4.1 Introduction 79</p> <p>4.2 Gram-Negative Bacteria and Antibiotics 80</p> <p>4.2.1 β-Lactam Drugs 81</p> <p>4.2.2 Macrolide 82</p> <p>4.2.3 Aminoglycosides 84</p> <p>4.2.4 Fluoroquinolones 84</p> <p>4.3 Production of Antibiotics 85</p> <p>4.3.1 Strain Development 85</p> <p>4.3.2 Media Formulation and Optimization 88</p> <p>4.3.3 Fermentation 90</p> <p>4.3.4 Downstream Processing and Purification 92</p> <p>4.3.5 Quality Control 95</p> <p>4.4 Conclusion 95</p> <p>References 96</p> <p><b>5 Role of Antifungal Drugs in Combating Invasive Fungal Diseases 103<br /> </b><i>Kakoli Dutt</i></p> <p>5.1 Introduction 103</p> <p>5.2 Antifungal Agents 105</p> <p>5.2.1 Azoles 114</p> <p>5.2.2 Polyenes 115</p> <p>5.2.3 Allylamine/Thiocarbonates 116</p> <p>5.2.4 Other Antifungal Agents 117</p> <p>5.3 Targets of Antifungal Agents 120</p> <p>5.3.1 Cell Wall Biosynthesis Inhibitors 120</p> <p>5.3.2 Sphingolipid Synthesis Inhibitors 123</p> <p>5.3.3 Ergosterol Synthesis Inhibitors 125</p> <p>5.3.4 Protein Synthesis Inhibitors 126</p> <p>5.3.5 Novel Targets 128</p> <p>5.4 Development of Resistance towards Antifungal Agents 130</p> <p>5.4.1 Minimum Inhibitory Concentration 130</p> <p>5.4.2 Antifungal-Drug-Resistance Mechanisms 131</p> <p>5.5 Market and Drug Development 134</p> <p>5.6 Conclusions 136</p> <p>Acknowledgement 137</p> <p>References 137</p> <p><b>6 Current Update on Rapamycin Production and Its Potential Clinical Implications 145<br /> </b><i>Girijesh K. Patel, Ruchika Goyal1 and Syed M. Waheed</i></p> <p>6.1 Introduction 145</p> <p>6.2 Biosynthesis of Rapamycin 146</p> <p>6.2.1 Microbial Strain 147</p> <p>6.2.2 Optimization of Carbon, Nitrogen Sources and Salts 147</p> <p>6.2.3 Strain Manipulation to Improve Rapamycin Production 148</p> <p>6.3 Organic Synthesis of Rapamycin 152</p> <p>6.4 Extraction and Quantification of Rapamycin 152</p> <p>6.5 Physiological Factors Affecting Rapamycin Biosynthesis 153</p> <p>6.5.1 Effect of Media Components 153</p> <p>6.5.2 Effect of pH on Rapamycin Production 153</p> <p>6.5.3 Effect of Physical Gravity 154</p> <p>6.5.4 Effect of Morphological Changes 154</p> <p>6.5.5 Effect of Dissolved Oxygen (DO) and Carbon Dioxide (DCO<sub>2</sub>) 154</p> <p>6.6 Production of Rapamycin Analogs 154</p> <p>6.7 Mechanism of Action of Rapamycin 155</p> <p>6.8 Use of Rapamycin in Medicine 157</p> <p>6.8.1 Anti-Fungal Agent 157</p> <p>6.8.2 Immunosuppression 158</p> <p>6.8.3 Anti-Cancer Agent 158</p> <p>6.8.4 Anti-Aging Agent 158</p> <p>6.8.5 Role in HIV Treatment 158</p> <p>6.8.6 Rheumatoid Arthritis 159</p> <p>6.9 Side Effects of Long-term Use of Rapamycin 159</p> <p>6.10 Conclusions 159</p> <p>Acknowledgements 160</p> <p>References 160</p> <p><b>7 Advances in Production of Therapeutic Monoclonal Antibodies 165<br /> </b><i>Richi V Mahajan, Subhash Chand, Mahendra Pal Singh, Apurwa Kestwal and Surinder Singh</i></p> <p>7.1 Introduction 165</p> <p>7.2 Discovery and Clinical Development 166</p> <p>7.3 Structure and Classification 167</p> <p>7.4 Nomenclature of Monoclonal Antibodies 168</p> <p>7.5 Production of Monoclonal Antibodies 170</p> <p>7.5.1 Hybridoma Technology 170</p> <p>7.5.2 Epstein-Barr Virus Technology 172</p> <p>7.5.3 Phage Display Technology 172</p> <p>7.5.4 Cell Line Based Production Techniques 173</p> <p>7.5.5 Chemical Modifications of Monoclonal Antibodies 183</p> <p>7.5.6 Advances in Antibody Technology 183</p> <p>7.6 Conclusions 185</p> <p>References 186</p> <p><b>8 Antimicrobial Peptides from Bacterial Origin: Potential Alternative to Conventional Antibiotics 193<br /> </b><i>Lipsy Chopra, Gurdeep Singh, Ramita Taggar, Akanksha Dwivedi, Jitender Nandal, Pradeep Kumar and Debendra K. Sahoo</i></p> <p>8.1 Introduction 193</p> <p>8.2 Classification of Bacteriocins 194</p> <p>8.2.1 Bacteriocins from Gram-Negative Bacteria 194</p> <p>8.2.2 Bacteriocins from Gram-Positive Bacteria 194</p> <p>8.3 Mode of Action 196</p> <p>8.3.1 Pore-Forming Bacteriocins 196</p> <p>8.3.2 Non-Pore-Forming Bacteriocins: Intracellular Targets 198</p> <p>8.4 Applications 198</p> <p>8.4.1 Food Bio Preservative 198</p> <p>8.4.2 Food Packaging (In Packaging Films) 198</p> <p>8.4.3 Hurdle Technology to Enhance Food Safety 199</p> <p>8.4.4 Therapeutic Potential 200</p> <p>8.4.5 Effect of Bacteriocins on Biofilms 200</p> <p>8.5 Conclusions 202</p> <p>Acknowledgments 202</p> <p>Abbreviations 202</p> <p>References 202</p> <p><b>9 Non-Ribosomal Peptide Synthetases: Nature’s Indispensable Drug Factories 205<br /> </b><i>Richa Sharma, Ravi S. Manhas and Asha Chaubey</i></p> <p>9.1 Introduction 205</p> <p>9.1.1 Non-Ribosomal Peptides as Natural Products 205</p> <p>9.1.2 Non-Ribosomal Peptides as Drugs 206</p> <p>9.2 NRPS Machinery 208</p> <p>9.3 Catalytic Domains of NRPSs 208</p> <p>9.3.1 Adenylation (A) Domains 208</p> <p>9.3.2 Thiolation (T) or PCP Domains 209</p> <p>9.3.3 Condensation (C) Domains 209</p> <p>9.3.4 Thioesterase (Te) Domains 209</p> <p>9.4 Types of NRPS 210</p> <p>9.4.1 Type A (Linear NRPS) 210</p> <p>9.4.2 Type B (Iterative NRPS) 210</p> <p>9.4.3 Type C (Non-linear NRPS) 210</p> <p>9.5 Working of NRPSs 210</p> <p>9.5.1 Priming Thiolation Domain of NRPS 211</p> <p>9.5.2 Substrate Recognition and Activation 211</p> <p>9.5.3 Peptide Bond Formation between NRP Monomers 211</p> <p>9.5.4 Chain Termination of NRP Synthesis 212</p> <p>9.5.5 NRP Tailoring 212</p> <p>9.6 Sources of NRPs 213</p> <p>9.7 Production of Non-Ribosomal Peptides 216</p> <p>9.8 Future Scope 218</p> <p>Acknowledgements 219</p> <p>References 219</p> <p><b>10 Enzymes as Therapeutic Agents in Human Disease Management 225<br /> </b><i>Babbal, Adivitiya, Shilpa Mohanty and Yogender Pal Khasa</i></p> <p>10.1 Introduction 225</p> <p>10.2 Pancreatic Enzymes 230</p> <p>10.2.1 Trypsin (EC 3.4.21.4) 230</p> <p>10.2.2 Pancreatic Lipase (EC 3.1.1.3) 231</p> <p>10.2.3 Amylases (EC 3.2.1.1) 231</p> <p>10.3 Oncolytic Enzymes 232</p> <p>10.3.1 L-Asparaginase (EC 3.5.1.1) 232</p> <p>10.3.2 L-Glutaminase (EC 3.5.1.2) 233</p> <p>10.3.3 Arginine Deiminase (ADI) (EC 3.5.3.6) 233</p> <p>10.4 Antidiabetic Enzymes 234</p> <p>10.4.1 Glucokinase (EC2.7.1.1)</p> <p>10.5 Liver Enzymes 235</p> <p>10.5.1 Superoxide Dismutase (SOD) (EC 1.15.1.1) 235</p> <p>10.5.2 Alkaline Phosphatase (ALP) (EC 3.1.3.1) 236</p> <p>10.6 Kidney Disorder 237</p> <p>10.6.1 Uricase (EC 1.7.3.3) 237</p> <p>10.6.2 Urease (EC 3.5.1.5) 238</p> <p>10.7 DNA- and RNA-Based Enzymes 238</p> <p>10.7.1 Dornase 239</p> <p>10.7.2 Adenosine Deaminase 240</p> <p>10.7.3 Ribonuclease 240</p> <p>10.8 Enzymes for the Treatment of Cardiovascular Disorders 241</p> <p>10.8.1 The Hemostatic System 242</p> <p>10.8.2 Enzymes of the Hemostatic System 244</p> <p>10.9 Lysosomal Storage Disorders 251</p> <p>10.9.1 α-Galactosidase A (EC 3.2.1.22) 251</p> <p>10.9.2 Glucocerebrosidase (EC 3.2.1.45) 252</p> <p>10.9.3 Acid Alpha-Glucosidase (GAA) (EC 3.2.1.20) 253</p> <p>10.9.4 α-L-iduronidase (Laronidase) (EC 3.2.1.76) 253</p> <p>10.10 Miscellaneous Enzymes 254</p> <p>10.10.1 Phenylalanine Hydroxylase (EC 1.14.16.1) 254</p> <p>10.10.2 Collagenase (EC 3.4.24.3) 255</p> <p>10.10.3 Hyaluronidase 256</p> <p>10.10.4 Bromelain 256</p> <p>10.11 Conclusions 256</p> <p>References 257</p> <p><b>11 Erythritol: A Sugar Substitute 265<br /> </b><i>Kanti N. Mihooliya, Jitender Nandal, Himanshu Verma and Debendra K. Sahoo</i></p> <p>11.1 Introduction 265</p> <p>11.1.1 Background of Erythritol 265</p> <p>11.1.2 History of Erythritol 268</p> <p>11.1.3 Occurrence of Erythritol 268</p> <p>11.1.4 General Characteristics 268</p> <p>11.2 Chemical and Physical Properties of Erythritol 271</p> <p>11.3 Estimation of Erythritol 271</p> <p>11.3.1 Thin Layer Chromatography (TLC) 273</p> <p>11.3.2 Colorimetric Assay for Detection of Polyols 273</p> <p>11.3.3 High-Performance Liquid Chromatography (HPLC) 273</p> <p>11.3.4 Capillary Electrophoresis (CE) 273</p> <p>11.4 Production Methods for Erythritol 274</p> <p>11.4.1 Chemical Methods for Erythritol Production 274</p> <p>11.4.2 Fermentative Methods for Erythritol Production 274</p> <p>11.5 Optimization of Erythritol Production 275</p> <p>11.5.1 One Factor at a Time 276</p> <p>11.5.2 Statistical Design Approaches 277</p> <p>11.6 Toxicology of Erythritol 277</p> <p>11.7 Applications of Erythritol 277</p> <p>11.7.1 Confectioneries 278</p> <p>11.7.2 Bakery 279</p> <p>11.7.3 Pharmaceuticals 279</p> <p>11.7.4 Cosmetics 279</p> <p>11.7.5 Beverages 279</p> <p>11.8 Precautions for Erythritol Usage 279</p> <p>11.9 Global Market for Erythritol 280</p> <p>11.10 Conclusions 280</p> <p>References 281</p> <p><b>12 Sugar and Sugar Alcohols: Xylitol 285<br /> </b><i>Bhumica Agarwal and Lalit Kumar Singh</i></p> <p>12.1 Introduction 285</p> <p>12.1.1 Lignocellulosic Biomass 286</p> <p>12.1.2 Properties of Xylitol 287</p> <p>12.1.3 Occurrence and Production of Xylitol 289</p> <p>12.2 Biomass Conversion Process 289</p> <p>12.2.1 Pretreatment Methodologies 289</p> <p>12.2.2 Enzymatic Hydrolysis 292</p> <p>12.2.3 Detoxification Techniques 293</p> <p>12.3 Utilization of Xylose 296</p> <p>12.3.1 Microorganisms Utilizing Xylose 296</p> <p>12.3.2 Metabolism of Xylose 297</p> <p>12.4 Process Variables 299</p> <p>12.4.1 Temperature and pH 299</p> <p>12.4.2 Substrate Concentration 300</p> <p>12.4.3 Aeration 301</p> <p>References 303</p> <p><b>13 Trehalose: An Anonymity Turns Into Necessity 309<br /> </b><i>Manali Datta and Dignya Desai</i></p> <p>13.1 Introduction 309</p> <p>13.2 Trehalose Metabolism Pathways 310</p> <p>13.3 Physicochemical Properties and its Biological Significance 311</p> <p>13.4 Trehalose Production 312</p> <p>13.4.1 Enzymatic Conversion to Trehalose 312</p> <p>13.4.2 Microbe Mediated Fermentation 314</p> <p>13.4.3 Purification and Detection of Trehalose in Fermentation Process 316</p> <p>13.5 Application of Trehalose 317</p> <p>13.5.1 Role of Trehalose in Food Industries 317</p> <p>13.5.2 Role of Trehalose in Cosmetics and Pharmaceutics 318</p> <p>13.6 Conclusions 319</p> <p>References 320</p> <p><b>14 Production of Yeast Derived Microsomal Human CYP450 Enzymes (Sacchrosomes) in High Yields, and Activities Superior to Commercially Available Microsomal Enzymes 323<br /> </b><i>Ibidapo Stephen Williams and Bhabatosh Chaudhuri</i></p> <p>14.1 Introduction 323</p> <p>14.1.1 Cytochrome P450 (CYP) Enzymes in Humans 323</p> <p>14.1.2 Human Cytochrome P450 Enzymes and their Role in Drug Metabolism 324</p> <p>14.1.3 Requirement of Activating Proteins to Form Functional Human CYP Enzymes 325</p> <p>14.1.4 Use of Yeast Biased Codons for the Syntheses of Human Cytochrome P450 Genes 325</p> <p>14.1.5 Expression of Human CYP Genes in Baker’s Yeast from an Episomal Plasmid 325</p> <p>14.1.6 Expression of Human CYP Genes in Baker’s Yeast from Integrative Plasmids 327</p> <p>14.1.7 The <i>ADH2 </i>Promoter for Production of Human CYP Enzymes in Baker’s Yeast 327</p> <p>14.1.8 Growth of Yeast Cells Containing Integrated Copies of CYP Gene Expression Cassettes, Driven by the <i>ADH2 </i>Promoter, for Production of CYP Enzymes 328</p> <p>14.2 Amounts of Microsomal CYP Enzyme Isolated from Yeast Strains Containing Chromosomally Integrated CYP Gene Expression Cassettes are far Higher than Strains Harbouring an Episomal Expression Plasmid Encoding a CYP Gene 328</p> <p>14.2.1 Preparation of Microsomal CYP Enzymes 328</p> <p>14.2.2 Measurement of the Amounts of Functional CYPs in Microsomes Isolated from Baker’s Yeast 329</p> <p>14.2.3 Production of Functional Human CYP1A2 Microsomal Enzyme from Baker’s Yeast 330</p> <p>14.2.4 Production of Functional Human CYP3A4 Microsomal Enzyme from Baker’s Yeast 330</p> <p>14.2.5 Production of Functional Human CYP2D6 Microsomal Enzyme from Baker’s Yeast 331</p> <p>14.2.6 Production of Functional Human CYP2C19 Microsomal Enzyme from Baker’s Yeast 332</p> <p>14.2.7 Production of Functional Human CYP2C9 Microsomal Enzyme from Baker’s Yeast 333</p> <p>14.2.8 Production of Functional Human CYP2E1 Microsomal Enzyme from Baker’s Yeast 333</p> <p>14.2.9 Comments on the Production of Human CYP Enzymes from Baker’s Yeast 334</p> <p>14.3 Comparison of CYP Enzyme Activity of Yeast-Derived Microsomes (Sacchrosomes) with Commercially Available Microsomes Isolated from Insect and Bacterial Cells 336</p> <p>14.3.1 Fluorescence-based Assays for Determining CYP Enzyme Activities in Isolated Microsomes 336</p> <p>14.3.2 Comparison of Enzyme Activity of CYP1A2 Sacchrosomes with Commercially Available CYP1A2 Microsomes Isolated from Insect and Bacterial Cells 336</p> <p>14.3.3 Comparison of Enzyme Activity of CYP2C9 Sacchrosomes with Those of Commercially Available CYP2C9 Microsomes from Insect and Bacterial Cells 337</p> <p>14.3.4 Comparison of Enzyme Activity of CYP2C19 Sacchrosomes with Those of Commercially Available CYP2C19 Microsomes from Insect and Bacterial Cells 337</p> <p>14.3.5 Comparison of Enzyme Activity of CYP2D6 Sacchrosomes with Those of Commercially Available CYP2D6 Microsomes from Insect and Bacterial Cells 338</p> <p>14.3.6 Comparison of Enzyme Activity of CYP3A4 Sacchrosomes with Those of Commercially Available CYP3A4 Microsomes from Insect and Bacterial Cells 338</p> <p>14.3.7 Comparison of Enzyme Activity of CYP2E1 Sacchrosomes with One of the Commercial CYP2E1 Microsomes Available from Insect Cells 339</p> <p>14.4 IC<sub>50</sub> Values of Known CYP Inhibitors Using Sacchrosomes, Commercial Enzymes and HLMs 339</p> <p>14.5 Stabilisation of Sacchrosomes through Freeze-drying 340</p> <p>14.6 Conclusions 342</p> <p>References 345</p> <p><b>15 Artemisinin: A Potent Antimalarial Drug 347<br /> </b><i>Alok Malaviya, Karan Malhotra, Anil Agarwal and Katherine Saikia</i></p> <p>15.1 Introduction 347</p> <p>15.2 Biosynthesis of Artemisinin in <i>Artemisia annua </i>and Pathways Involved 348</p> <p>15.3 Yield Enhancement Strategies in <i>A. annua </i>351</p> <p>15.4 Artemisinin Production Using Heterologous Hosts 352</p> <p>15.4.1 Microbial Engineering 352</p> <p>15.4.2 Plant Metabolic Engineering 353</p> <p>15.5 Spread of Artemisinin Resistance 357</p> <p>15.6 Challenges in Large-Scale Production 358</p> <p>15.7 Future Prospects 360</p> <p>References 360</p> <p><b>16 Microbial Production of Flavonoids: Engineering Strategies for Improved Production 365<br /> </b><i>Aravind Madhavan, Raveendran Sindhu, KB Arun, Ashok Pandey, Parameswaran Binod and Edgard Gnansounou</i></p> <p>16.1 Introduction 365</p> <p>16.2 Flavonoids 366</p> <p>16.3 Flavonoid Chemistry and Classes 366</p> <p>16.4 Health Benefits of Flavonoids 367</p> <p>16.5 Flavonoid Biosynthesis in Microorganism 368</p> <p>16.6 Engineering of Flavonoid Biosynthesis Pathway 370</p> <p>16.7 Metabolic Engineering Strategies 370</p> <p>16.8 Applications of Synthetic Biology in Flavonoid Production 371</p> <p>16.9 Post-modification of Flavonoids 374</p> <p>16.10 Purification of Flavonoids 374</p> <p>16.11 Conclusion 375</p> <p>Acknowledgements 375</p> <p>References 376</p> <p><b>17 Astaxanthin: Current Advances in Metabolic Engineering of the Carotenoid 381<br /> </b><i>Manmeet Ahuja, Jayesh Varavadekar, Mansi Vora, Piyush Sethia, Harikrishna Reddy and Vidhya Rangaswamy</i></p> <p>17.1 Introduction 381</p> <p>17.1.1 Structure of Astaxanthin 382</p> <p>17.1.2 Natural vs. Synthetic Astaxanthin 382</p> <p>17.1.3 Uses and Market of Astaxanthin 383</p> <p>17.2 Pathway of Astaxanthin 384</p> <p>17.2.1 Bacteria 384</p> <p>17.2.2 Algae 384</p> <p>17.2.3 Yeast 385</p> <p>17.2.4 Plants 386</p> <p>17.3 Challenges/Current State of the Art in Fermentation/Commercial Production 386</p> <p>17.4 Metabolic Engineering for Astaxanthin 388</p> <p>17.4.1 Bacteria 388</p> <p>17.4.2 Plants 390</p> <p>17.4.3 Synechocystis 391</p> <p>17.4.4 Algae 391</p> <p>17.4.5 Yeast 392</p> <p>17.5 Future Prospects 393</p> <p>References 395</p> <p><b>18 Exploitation of Fungal Endophytes as Bio-factories for Production of Functional Metabolites through Metabolic Engineering; Emphasizing on Taxol Production 401<br /> </b><i>Sanjog Garyali, Puja Tandon, M. Sudhakara Reddy and Yong Wang</i></p> <p>18.1 Introduction 401</p> <p>18.2 Taxol: History and Clinical Impact 403</p> <p>18.3 Endophytes 403</p> <p>18.3.1 Biodiversity of Endophytes 405</p> <p>18.3.2 Endophyte vs. Host Plant: the Relationship 405</p> <p>18.4 The Plausibility of Horizontal Gene Transfer (HGT) Hypothesis 407</p> <p>18.5 Endophytes as Biological Factories of Functional Metabolites 409</p> <p>18.6 Taxol Producing Endophytic Fungi 410</p> <p>18.7 Molecular Basis of Taxol Production by <i>Taxus </i>Plants (Taxol Biosynthetic Pathway) 412</p> <p>18.8 Metabolic Engineering for Synthesis of Taxol: Next Generation Tool 416</p> <p>18.8.1 Plant Cell Culture 417</p> <p>18.8.2 Microbial Metabolic Engineering for Synthesis of Taxol and Its Precursors 418</p> <p>18.8.3 Metabolic Engineering in Heterologous Plant for Synthesis of Taxol and Its Precursors 420</p> <p>18.9 Future Perspectives 421</p> <p>Acknowledgements 423</p> <p>References 423</p> <p>Index 431</p>
<p><b>Saurabh Saran,</b> PhD, is a microbiologist and fermentation scientist with over ten years of experience in industrial microbiology, biotechnology and fermentation technology. He received his doctorate from Delhi University, and he has extensive experience in both the academic and industrial worlds, in multiple countries. He is currently Senior Scientist in the Fermentation Technology Division at the Indian Institute of Integrative Medicine, Jammu. He has three patents and more than 25 international publications in peer reviewed international journals on fermentation technology to his credit. <p><b>Vikash Babu</b>, PhD, has a doctorate from the Indian Institute of Technology and has over ten years of experience in graduate and postgraduate work and teaching. After working at Mangalayatan University and Graphic Era University, he joined the Indian Institute of Integrative Medicine as a scientist. He has been the editor on one book, also available from Wiley-Scrivener. <p><b>Asha Chaubey</b>, PhD, is Senior Scientist at the Fermentation Technology Division at the Indian Institute of Integrative Medicine, Jammu, India. Her research interests include exploration and exploitation of microbes for bioactives & enzymes production, immobilization of enzymes, biotransformation, kinetic resolution of racemic drug intermediates, development of biosensors for health care and <b>environmental monitoring.</b>Cover Design: Kris Hackerott
<p><b>Highlighting products that have great potential in the era of green technology, this volume covers a broad field of fermentation technology used for the production of high value products, which are currently in high demand.</b> <p>Green technologies are no longer the "future" of science, but the present. With more and more mature industries, such as the process industries, making large strides seemingly every single day, and more consumers demanding products created from green technologies, it is essential for any business in any industry to be familiar with the latest processes and technologies. It is all part of a global effort to "go greener," and this is nowhere more apparent than in fermentation technology. <p>This book describes relevant aspects of industrial-scale fermentation, an expanding area of activity, which already generates commercial values of over one third of a trillion US dollars annually, and which will most likely radically change the way we produce chemicals in the long-term future. From biofuels and bulk amino acids to monoclonal antibodies and stem cells, they all rely on mass suspension cultivation of cells in stirred bioreactors, which is the most widely used and versatile way to produce. Today, a wide array of cells can be cultivated in this way, and for most of them genetic engineering tools are also available. Examples of products, operating procedures, engineering and design aspects, economic drivers and cost, and regulatory issues are addressed. In addition, there will be a discussion of how we got to where we are today, and of the real world in industrial fermentation. This chapter is exclusively dedicated to large-scale production used in industrial settings. <p>This first volume in a 2-volume set <ul> <li>Discusses fermentation products of high commercial value that are currently industrially demanding, and offers practical applications to aid in the development and research of these products</li> <li>Is divided into sections, covering antibiotics, sugar and sugar alcohols, metabolically engineered derived products, and many other topics</li> <li>Focuses on the fermentation product rather than fermentation processes</li> <li>Will be helpful to industry personnel, scientists, professors, researchers and students to learn the new concept and better approaches for the development of fermentation-based industrial products.</li> </ul>

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €