Details

Microbiology in Dairy Processing


Microbiology in Dairy Processing

Challenges and Opportunities
Institute of Food Technologists Series 1. Aufl.

von: Palmiro Poltronieri

186,99 €

Verlag: Wiley-Blackwell
Format: PDF
Veröffentl.: 14.09.2017
ISBN/EAN: 9781119114970
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An authoritative guide to microbiological solutions to common challenges encountered in the industrial processing of milk and the production of milk products</b></p> <p><i>Microbiology in Dairy Processing </i>offers a comprehensive introduction to the most current knowledge and research in dairy technologies and lactic acid bacteria (LAB) and dairy associated species in the fermentation of dairy products. The text deals with the industrial processing of milk, the problems solved in the industry, and those still affecting the processes. The authors explore culture methods and species selective growth media, to grow, separate, and characterize LAB and dairy associated species, molecular methods for species identification and strains characterization, Next Generation Sequencing for genome characterization, comparative genomics, phenotyping, and current applications in dairy and non-dairy productions.</p> <p>In addition, <i>Microbiology in Dairy Processing </i>covers the Lactic Acid Bacteria and dairy associated species (the beneficial microorganisms used in food fermentation processes): culture methods, phenotyping, and proven applications in dairy and non-dairy productions. The text also reviews the potential future exploitation of the culture of novel strains with useful traits such as probiotics, fermentation of sugars, metabolites produced, bacteriocins. This important resource:</p> <ul> <li>Offers solutions both established and novel to the numerous challenges commonly encountered in the industrial processing of milk and the production of milk products</li> <li>Takes a highly practical approach, tackling the problems faced in the workplace by dairy technologists</li> <li>Covers the whole chain of dairy processing from milk collection and storage though processing and the production of various cheese types</li> </ul> <p>Written for laboratory technicians and researchers, students learning the protocols for LAB isolation and characterisation, <i>Microbiology in Dairy Processing</i> is the authoritative reference for professionals and students. </p>
<p>List of contributors xv</p> <p>Foreword xix</p> <p>Preface xxi</p> <p>Acknowledgements xxiii</p> <p><b>1 Milk fat components and milk quality 1<br /></b><i>Iolanda Altomonte, Federica Salari and Mina Martini</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Milk fat globules 2</p> <p>1.1.2 Milk fat and fatty acid composition 4</p> <p>1.2 Conclusions 7</p> <p>References 7</p> <p><b>2 Spore</b><b>?]</b><b>forming bacteria in dairy products 11<br /></b><i>Sonia Garde Lopez</i><i>?]</i><i>Brea, Natalia Gomez</i><i>?]</i><i>Torres and Marta Avila Arribas</i></p> <p>2.1 Introduction 11</p> <p>2.2 The bacterial spore 13</p> <p>2.2.1 Structure and chemical composition of bacterial spores 14</p> <p>2.2.1.1 Exosporium 14</p> <p>2.2.1.2 Spore coat 14</p> <p>2.2.1.3 Outer spore membrane 15</p> <p>2.2.1.4 Cortex and germ cell wall 15</p> <p>2.2.1.5 Inner spore membrane 15</p> <p>2.2.1.6 The core spore 15</p> <p>2.2.2 Spore resistance 16</p> <p>2.2.3 Life cycle of spore?]forming bacteria 17</p> <p>2.3 Spore?]forming bacteria important for the dairy industry 18</p> <p>2.3.1 Class Bacilli 18</p> <p>2.3.1.1 Bacillus genus 19</p> <p>2.3.1.1.1 Bacillus cereus 19</p> <p>2.3.1.1.2 Other Bacillus species 20</p> <p>2.3.1.1.3 Importance of Bacillus spp. in the dairy industry 21</p> <p>2.3.1.2 Geobacillus and Anoxybacillus genera 24</p> <p>2.3.1.3 Paenibacillus genus 25</p> <p>2.3.2 Class Clostridia 25</p> <p>2.3.2.1 Clostridium botulinum 26</p> <p>2.3.2.2 Clostridium perfringens 28</p> <p>2.3.2.3 Clostridium tyrobutyricum and related species 28</p> <p>2.4 Control strategies to prevent poisoning and spoilage of milk and dairy products by spore?]forming bacteria 30</p> <p>2.5 Conclusions 31</p> <p>References 32</p> <p><b>3 Psychrotrophic bacteria 37<br /></b><i>Milena Brasca, Marilu Decimo, Stefano Morandi, Solimar Goncalves Machado, Francois</i> <i>Bagliniere and Maria Cristina Dantas Vanetti</i></p> <p>3.1 Introduction 37</p> <p>3.2 Sources of psychrotrophic bacteria contamination of milk 38</p> <p>3.3 Important spoilage psychrotrophic bacteria in milk 42</p> <p>3.4 Molecular tools to characterize psychrotrophic bacteria 43</p> <p>3.5 Influence of psychrotrophic contamination of raw milk on dairy product quality 45</p> <p>3.5.1 Bacterial proteases and proteolytic changes in milk 46</p> <p>3.5.2 Bacterial lipases and phospholipases and their significance in milk 49</p> <p>3.6 Regulation of extracellular enzymes 52</p> <p>3.7 Control of psychrotrophic bacteria and related enzymes 53</p> <p>3.8 Conclusions 54</p> <p>References 54</p> <p><b>4 Stabilization of milk quality by heat treatments 63<br /></b><i>Palmiro Poltronieri and Franca Rossi</i></p> <p>4.1 Introduction 63</p> <p>4.2 Thermal treatments of milk 63</p> <p>4.2.1 Thermization 63</p> <p>4.2.2 Pasteurization 64</p> <p>4.2.3 Grade A pasteurized milk 66</p> <p>4.3 Milk sterilization 67</p> <p>4.3.1 Control of proper time/temperature setting for safety of milk and milk products 67</p> <p>4.4 Diseases associated with unpasteurized milk, or post?]pasteurization dairy?]processing contamination 68</p> <p>4.5 Conclusions 68</p> <p>References 68</p> <p><b>5 Genomics of LAB and dairy</b><b>?]</b><b>associated species 71<br /></b><i>Palmiro Poltronieri, Franca Rossi, Cesare Camma, Francesco Pomilio and Cinzia Randazzo</i></p> <p>5.1 Introduction 71</p> <p>5.2 Genomics of lab and dairy?]associated species 71</p> <p>5.2.1 Next?]generation sequencing of strains, dairy starter genomics and metagenomics 72</p> <p>5.2.2 Pacific Bioscience single?]molecule real?]time sequencing technology 73</p> <p>5.2.3 Illumina MySeq and HiSeq 2000 73</p> <p>5.2.4 Ion Torrent platform 73</p> <p>5.3 NGS platform applied to sequencing of microbial communities 74</p> <p>5.3.1 Pangenomics 74</p> <p>5.3.2 Omic technologies: transcriptomics, proteomics, functional genomics, systems biology 75</p> <p>5.4 Metabolomics and proteomics 76</p> <p>5.4.1 Subcellular localisation (SLC): secretion systems for secreted proteins 77</p> <p>5.4.2 Interactome for cell adhesion and pathogen exclusion 78</p> <p>5.4.3 Lab peptidome 79</p> <p>5.5 Comparative genomics of dairy?]associated bacteria: the lactobacillus genus complex, streptococci/lactococci, enterococci, propionibacteria and bifidobacteria 79</p> <p>5.5.1 Comparative genomics of Lb. rhamnosus and Lb. casei 83</p> <p>5.5.2 Lb. casei core genome and ecotype differences in dairy adapted strains 84</p> <p>5.6 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in adaptive immunity 84</p> <p>5.7 Regulation in carbon metabolism 85</p> <p>5.7.1 Transcriptional and posttranscriptional regulation in carbon metabolism 85</p> <p>5.7.2 Two?]component systems and phosphorylation in sugar substrate regulation 86</p> <p>5.7.3 Regulatory RNAs and alternative sigma factors in gene expression 87</p> <p>5.8 Conclusions 88</p> <p>References 88</p> <p><b>6 Metabolism and biochemistry of LAB and dairy</b><b>?]</b><b>associated species 97<br /></b><i>Palmiro Poltronieri, Giovanna Battelli and Nicoletta Pasqualina Mangia</i></p> <p>6.1 Introduction 97</p> <p>6.2 Carbohydrate substrates, glycolysis and energy production 98</p> <p>6.2.1 Pentose phosphate pathway 99</p> <p>6.2.2 Citrate fermentation 99</p> <p>6.3 Proteolysis, protein substrates and amino acid availability influencing gene expression 100</p> <p>6.3.1 Cell?]envelope proteinases: the Prt system 101</p> <p>6.3.2 Oligopeptide permeases and other transporters for peptides and amino acids 101</p> <p>6.3.3 Peptidolysis and free amino acids 102</p> <p>6.3.4 Peptidolysis and catabolite repression 105</p> <p>6.3.5 Amino acid biosynthesis and auxotrophy 105</p> <p>6.4 Lipolysis, lipases, esterases 106</p> <p>6.5 Aroma and flavour products of metabolism 107</p> <p>6.5.1 Aldehydes, alcohols and carboxylic acids 110</p> <p>6.5.2 Amino acids as precursor flavour compounds 112</p> <p>6.6 Nonenzymatic production of flavours 113</p> <p>6.7 Methods of analysis of flavours in dairy products: HPLC, gas chromatography/ mass analysis (GC/MS) 114</p> <p>6.8 Natural biodiversity of strains in dairy productions 115</p> <p>6.9 Conclusions 116</p> <p>References 117</p> <p><b>7 Growth needs and culture media for LAB and dairy</b><b>?]</b><b>associated species 123<br /></b><i>Giuseppe Blaiotta, Maria Aponte and Palmiro Poltronieri</i></p> <p>7.1 Introduction 123</p> <p>7.2 Established culture media for lactobacilli 123</p> <p>7.2.1 Rogosa agar 124</p> <p>7.2.2 MRS medium 125</p> <p>7.2.3 Skim milk and whey agar 125</p> <p>7.3 M17 medium for selection and enumeration of lactococci and streptococci 126</p> <p>7.3.1 St. thermophilus agar 126</p> <p>7.4 Selective media for lactobacilli 127</p> <p>7.4.1 MRS vancomycin 127</p> <p>7.4.2 Additional selective agents 128</p> <p>7.4.3 MRSV plus selective agents for Lb. casei group enumeration 129</p> <p>7.4.4 MRS?]salicin, MRS?]sorbitol, MRS?]ribose, MRS gluconate agar 129</p> <p>7.4.5 MRS?]clindamycin?]ciprofloxacin agar 129</p> <p>7.4.6 MMV medium for Lb. casei group enumeration 130</p> <p>7.4.7 MRS containing fructose (MRSF) 130</p> <p>7.4.8 mMRS?]BPB 131</p> <p>7.4.9 MRS?]NNLP agar and chromogenic agars for complex communities 131</p> <p>7.4.10 Homofermentative?]heterofermentative differential medium 131</p> <p>7.5 Media for the isolation of bifidobacteria 132</p> <p>7.5.1 MRS?]NNLP agar 133</p> <p>7.5.2 BSM, WSP, TOS?]MUP 133</p> <p>7.5.3 MRS?]ABC 134</p> <p>7.6 Phenotyping 134</p> <p>7.7 Conclusions 135</p> <p>References 135</p> <p><b>8 LAB species and strain identification 139<br /></b><i>Cinzia Randazzo, Alessandra Pino, Koenraad Van Hoorde and Cinzia Caggia</i></p> <p>8.1 Introduction 139</p> <p>8.2 Genotypic fingerprinting methods 140</p> <p>8.3 Culture?]dependent approaches 142</p> <p>8.3.1 Random amplification of polymorphic DNA 142</p> <p>8.3.2 ARDRA and RFLP 143</p> <p>8.3.3 Ribotyping 143</p> <p>8.3.4 Repetitive element sequence?]based PCR 144</p> <p>8.3.5 Amplified fragment length polymorphism 145</p> <p>8.3.6 Pulsed field gel electrophoresis 145</p> <p>8.4 Non?]genotypic fingerprinting methods 146</p> <p>8.5 Culture?]independent approaches 147</p> <p>8.5.1 Culture?]independent methods for qualitative analysis of dairy foods microbiota 147</p> <p>8.5.2 Culture?]independent methods for quantitative analysis of dairy foods microbiota 150</p> <p>8.6 Novel high?]throughput techniques: sequencing and metagenomics 151</p> <p>8.7 Conclusions 152</p> <p>References 152</p> <p><b>9 LAB strains with bacteriocin synthesis genes and their applications 161<br /></b><i>Lorena Sacchini, Giacomo Migliorati, Elisabetta Di Giannatale, Francesco Pomilio and</i> <i>Franca Rossi</i></p> <p>9.1 Introduction 161</p> <p>9.2 Bacteriocins from lab 161</p> <p>9.3 Potential for use of lab bacteriocins as food preservatives 164</p> <p>9.4 Bacteriocins produced by dairy lab 165</p> <p>9.5 Identification of lab?]producing bacteriocins 168</p> <p>9.6 A novel approach for screening lab bacteriocins 170</p> <p>9.7 Biotechnological interventions for bacteriocin engineering 171</p> <p>9.8 Conclusions 172</p> <p>References 172</p> <p><b>10 Starter strains and adjunct non</b><b>?]</b><b>starter lactic acid bacteria (NSLAB) in dairy products 177<br /></b><i>Paola Dolci and Luca Cocolin</i></p> <p>10.1 Introduction 177</p> <p>10.2 Controlled fermentation 177</p> <p>10.2.1 Natural versus selected lactic acid bacteria starters 178</p> <p>10.2.2 Starter strains: selection parameter approaches and strain concept 179</p> <p>10.2.3 Starter culture formulation 180</p> <p>10.3 Adjunct non?]starter lactic acid bacteria 181</p> <p>10.3.1 Biodiversity and adaptation to cheese environment 181</p> <p>10.3.2 Prospective in industrial application 182</p> <p>10.3.3 Biopreservation and health benefits 183</p> <p>10.4 Conclusions 185</p> <p>References 185</p> <p><b>11 Milk Fat: stability, separation and technological transformation 191<br /></b><i>Gianluigi Scolari</i></p> <p>11.1 Introduction 191</p> <p>11.1.1 Composition and physical state of milk fat 192</p> <p>11.1.2 Melting point of milk fat 194</p> <p>11.2 Physical instability of milk fat 194</p> <p>11.3 Milk fat separation 195</p> <p>11.3.1 Flocculation or natural creaming 195</p> <p>11.3.2 Milk fat separation by centrifugation 197</p> <p>11.4 Partial coalescence 199</p> <p>11.4.1 General aspects 199</p> <p>11.4.2 Barrier against coalescence 201</p> <p>11.4.2.1 Low molecular mass surfactants 201</p> <p>11.4.2.2 Large sized surfactants (casein micelle) 202</p> <p>11.4.2.3 Polymeric surfactants (proteins and polysaccharides) 203</p> <p>11.4.2.4 Mixed films 203</p> <p>11.5 Foam in milk and cream 204</p> <p>11.5.1 General aspects 204</p> <p>11.5.1.1 Foam formation without surfactants 204</p> <p>11.5.1.2 Foam formation with surfactants 205</p> <p>11.5.1.3 Drainage of dispersion liquid in foam 206</p> <p>11.5.2 Foam from cream containing more than 30% milk fat 207</p> <p>11.6 Whipped cream and butter 209</p> <p>11.6.1 Technological factors affecting whipped cream and butter production 209</p> <p>11.7 Churning process 210</p> <p>11.7.1 Type of cream 210</p> <p>11.7.2 Physical (crystallization) and biological maturation of cream before churning 212</p> <p>11.7.3 Churning technology 215</p> <p>11.7.4 Continuous churning 216</p> <p>11.7.5 Moulding and packaging 217</p> <p>11.8 Conclusions 217</p> <p>References 218</p> <p><b>12 Biological traits of lactic acid bacteria: industrial relevance and new perspectives</b> <b>in dairy applications 219<br /></b><i>Diego Mora, Fabio Dal Bello and Stefania Arioli</i></p> <p>12.1 Introduction 219</p> <p>12.2 Selecting fermenting bacteria for their ability to have a respiratory metabolism 220</p> <p>12.3 Selecting galactose?]positive yogurt cultures: working “against the natural evolution of the species” 221</p> <p>12.4 Accelerating the milk acidification process by selecting proteinase?]positive strains 222</p> <p>12.5 Accelerating the milk acidification process by selecting urease?]negative S. thermophilus strains 224</p> <p>12.6 Protective cultures for dairy applications: “work but please do not grow and do not modify the sensory profile of the product” 225</p> <p>12.7 Selection of starter culture free of transferable antibiotic?]resistance mechanisms 227</p> <p>12.8 Conclusions 228</p> <p>References 229</p> <p><b>13 Lactic acid bacteria bacteriophages in dairy products: problems</b></p> <p><b>and solutions 233<br /></b><i>Giorgio Giraffa, Miriam Zago and Domenico Carminati</i></p> <p>13.1 Introduction 233</p> <p>13.2 Phage classification 234</p> <p>13.3 Phage?]host interactions 236</p> <p>13.4 Sources of contamination 238</p> <p>13.4.1 Milk and cheese whey 238</p> <p>13.4.2 Dairy cultures 239</p> <p>13.4.2.1 The lysogenic state 239</p> <p>13.5 Phage detection and quantification 240</p> <p>13.6 Methods to control phage contamination 242</p> <p>13.6.1 Phage inactivation by physical treatments 242</p> <p>13.6.2 Phage inactivation by chemical treatments 244</p> <p>13.6.3 Phage control by biological approaches 245</p> <p>13.7 Conclusions 246</p> <p><b>14 Lactic acid bacteria: a cell factory for delivering functional biomolecules in dairy</b> <b>products 251<br /></b><i>Tiziana Silvetti, Stefano Morandi and Milena Brasca</i></p> <p>14.1 Introduction 251</p> <p>14.2 Vitamins 253</p> <p>14.2.1 Vitamin B2 or Riboflavin 254</p> <p>14.2.2 Vitamin B9 or Folate 255</p> <p>14.2.3 Vitamin B12 or cobalamin 256</p> <p>14.2.4 Vitamin K: menaquinone 257</p> <p>14.2.5 Other B?]group vitamins 258</p> <p>14.3 Minerals 258</p> <p>14.4 Bioactive compounds 261</p> <p>14.4.1 Anti?]hypertensive peptides 262</p> <p>14.4.2 Antioxidative peptides 263</p> <p>14.4.3 Bioactive amines 265</p> <p>14.4.4 Immune system affecting peptides 267</p> <p>14.4.5 Opioid peptides 267</p> <p>14.4.6 Metal?]binding peptides 268</p> <p>14.4.7 Conjugated linoleic acid and conjugated linolenic acid 268</p> <p>14.5 Low?]calorie sweeteners 269</p> <p>14.6 Exopolysaccharides (EPS) 271</p> <p>14.7 Conclusions 273</p> <p>References 273</p> <p><b>15 Dairy technologies in yogurt production 279<br /></b><i>Panagiotis Sfakianakis and Constantina Tzia</i></p> <p>15.1 Introduction 279</p> <p>15.2 Yogurt types 280</p> <p>15.3 Yogurt manufacturing process 281</p> <p>15.3.1 Initial treatment of milk 281</p> <p>15.3.2 Standardization of milk components – fat and SNF content 283</p> <p>15.3.3 Homogenization 284</p> <p>15.3.4 Heat treatment 286</p> <p>15.3.5 Fermentation process 288</p> <p>15.3.5.1 Monitoring of fermentation process – prediction of fermentation evolution 290</p> <p>15.3.6 Post?]fermentation processing 292</p> <p>15.3.6.1 Cooling – addition of additives 292</p> <p>15.3.6.2 Addition of fruit 292</p> <p>15.3.6.3 Packaging 294</p> <p>15.3.7 Quality control of yogurt production 294</p> <p>15.4 Conclusions 295</p> <p>References 295</p> <p><b>16 Milk protein composition and sequence differences in milk and fermented dairy products affecting digestion and tolerance to dairy products 299<br /></b><i>Maria Gabriella Giuffrida, Marzia Giribaldi, Laura Cavallarin and Palmiro Poltronieri</i></p> <p>16.1 Introduction 299</p> <p>16.2 Caseins 301</p> <p>16.2.1 Gene polymorphisms in κ?]casein genes 302</p> <p>16.2.2 Gene polymorphisms in β?]casein gene 303</p> <p>16.3 Proteolytic release of bioactive peptides in fermented milk and cheese 304</p> <p>16.4 Minor milk proteins 305</p> <p>16.4.1 Lactoferrin 305</p> <p>16.4.2 β?]Lactoglobulin (β?]LG) 306</p> <p>16.4.3 α?]Lactalbumin (α?]LA) 306</p> <p>16.5 Proteins with bioactive roles 307</p> <p>16.6 MFGM-associated proteins 308</p> <p>16.7 Cow’s milk protein allergy (CMPA) 308</p> <p>16.8 Conclusions 309</p> <p>References 309</p> <p>Index 315</p>
<p> <strong>Palmiro Poltronieri, PhD,</strong> is a Researcher at the Institute of the Sciences of Food Productions (CNR-ISPA), National Research Council of Italy. He obtained his Ph.D. in Cellular and Molecular Biology and Pathology in 1995 at the Institute of Chemical Biology, Medical Faculty of Verona University. Working in the Microbiology laboratory since 1999, he has established collaboration with the principal laboratories working in the field of food microbiology.
<p> <em>Microbiology in Dairy Processing</em> offers a comprehensive introduction to the most current knowledge and research in dairy technologies and lactic acid bacteria (LAB) and dairy associated species in the fermentation of dairy products. The text deals with the industrial processing of milk, the problems solved in the industry, and those still affecting the processes. The authors explore culture methods and species selective growth media, to grow, separate, and characterize LAB and dairy associated species, molecular methods for species identification and strains characterization, Next Generation Sequencing for genome characterization, comparative genomics, phenotyping, and current applications in dairy and non-dairy productions. <p> In addition, <em>Microbiology in Dairy Processing</em> covers the Lactic Acid Bacteria and dairy associated species (the beneficial microorganisms used in food fermentation processes): culture methods, phenotyping, and proven applications in dairy and non-dairy productions. The text also reviews the potential future exploitation of the culture of novel strains with useful traits such as probiotics, fermentation of sugars, metabolites produced, bacteriocins. This important resource: <ul> <li>Offers solutions both established and novel to the numerous challenges commonly encountered in the industrial processing of milk and the production of milk products</li> <li>Takes a highly practical approach, tackling the problems faced in the workplace by dairy technologists</li> <li>Covers the whole chain of dairy processing from milk collection and storage though processing and the production of various cheese types</li> </ul> <br> <p> Written for laboratory technicians and researchers, students learning the protocols for LAB isolation and characterisation, <em>Microbiology in Dairy Processing</em> is the authoritative reference for professionals and students.

Diese Produkte könnten Sie auch interessieren:

Agricultural Biodiversity and Biotechnology in Economic Development
Agricultural Biodiversity and Biotechnology in Economic Development
von: Joseph Cooper, Leslie Lipper, David Zilberman
PDF ebook
213,99 €
Policy Reforms and Agriculture Development in Central Asia
Policy Reforms and Agriculture Development in Central Asia
von: Sandjar Djalalov, Suresh Chandra Babu
PDF ebook
213,99 €
Regulating Agricultural Biotechnology
Regulating Agricultural Biotechnology
von: Richard E. Just, Julian M. Alston, David Zilberman
PDF ebook
213,99 €