Details

Plant Nucleotide Metabolism


Plant Nucleotide Metabolism

Biosynthesis, Degradation, and Alkaloid Formation
1. Aufl.

von: Hiroshi Ashihara, Alan Crozier, Iziar A. Ludwig

170,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.01.2020
ISBN/EAN: 9781119476108
Sprache: englisch
Anzahl Seiten: 456

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>All organisms produce nucleobases, nucleosides, and nucleotides of purines and pyrimidines. However, while there have been a number of texts on nucleotide metabolism in microorganisms and humans, the presence of these phenomena in plant life has gone comparatively unexplored. This ground-breaking new book is the first to focus exclusively on the aspects of purine nucleotide metabolism and function that are particular to plants, making it a unique and essential resource.  </p> <p>The authors provide a comprehensive break down of purine nucleotide structures and metabolic pathways, covering all facets of the topic. Furthermore, they explain the role that purine nucleotides can play in plant development, as well as the effects they may have on human health when ingested.</p> <p><i>Plant Nucleotide Metabolism</i> offers a unique and important resource to all students, researchers, and lecturers working in plant biochemistry, physiology, chemistry, agricultural sciences, nutrition, and associated fields of research. </p>
<p>Preface xv</p> <p><b>Part I General Aspects of Nucleotide Metabolism </b><b>1</b></p> <p><b>1 Structures of Nucleotide-Related Compounds </b><b>3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Nomenclature and Abbreviations of Nucleotide-Related Compounds 3</p> <p>1.3 Chemical Structures of Nucleotide-Related Compounds 5</p> <p>1.3.1 Purines 5</p> <p>1.3.1.1 Purine Bases 5</p> <p>1.3.1.2 Purine Nucleosides 6</p> <p>1.3.1.3 Purine Nucleotides 7</p> <p>1.3.2 Pyrimidines 8</p> <p>1.3.2.1 Pyrimidine Bases 9</p> <p>1.3.2.2 Pyrimidine Nucleosides 9</p> <p>1.3.2.3 Pyrimidine Nucleotides 10</p> <p>1.3.3 Pyridines 11</p> <p>1.4 Summary 11</p> <p>References 11</p> <p><b>2 Occurrence of Nucleotides and Related Metabolites in Plants </b><b>13</b></p> <p>2.1 Purines and Pyrimidines 13</p> <p>2.1.1 Concentration of Purine and Pyrimidine Nucleotides 14</p> <p>2.1.2 Concentration of Purine and Pyrimidine Bases and Nucleosides 16</p> <p>2.2 Pyridine Nucleotides 17</p> <p>2.2.1 Concentration of Pyridine Nucleotides 17</p> <p>2.2.2 Concentration of Nicotinate and Nicotinamide 18</p> <p>2.3 Concentration of Cytokinins 18</p> <p>2.4 Alkaloids Derived from Nucleotides 18</p> <p>2.5 Summary 19</p> <p>References 19</p> <p><b>3 General Aspects of Nucleotide Biosynthesis and Interconversions </b><b>21</b></p> <p>3.1 Introduction 21</p> <p>3.2 <i>De Novo</i> Biosynthesis of Ribonucleoside Monophosphates 21</p> <p>3.3 Interconversion of Nucleoside Monophosphates, Nucleoside Diphosphates, and Triphosphates 23</p> <p>3.3.1 Nucleoside-Monophosphate Kinase 23</p> <p>3.3.2 Specific Nucleoside-Monophosphate Kinases 24</p> <p>3.4 Conversion of Nucleoside Diphosphates to Nucleoside Triphosphates 24</p> <p>3.4.1 ATP Synthesis by Electron Transfer Systems 25</p> <p>3.4.2 Substrate-Level ATP Synthesis 26</p> <p>3.4.3 Nucleoside-Diphosphate Kinase 26</p> <p>3.5 Biosynthesis of Deoxyribonucleotides 29</p> <p>3.6 Nucleic Acid Biosynthesis 29</p> <p>3.7 Supply of 5-Phosphoribosyl-1-Pyrophosphate 30</p> <p>3.8 Supply of Amino Acids for Nucleotide Biosynthesis 33</p> <p>3.9 Nitrogen Metabolism and Amino Acid Biosynthesis in Plants 33</p> <p>3.10 Summary 34</p> <p>References 35</p> <p><b>Part II Purine Nucleotide Metabolism </b><b>39</b></p> <p><b>4 Purine Nucleotide Biosynthesis De Novo </b><b>41</b></p> <p>4.1 Introduction 41</p> <p>4.2 Reactions and Enzymes 43</p> <p>4.2.1 Synthesis of Phosphoribosylamine 44</p> <p>4.2.2 Synthesis of Glycineamide Ribonucleotide 46</p> <p>4.2.3 Synthesis of Formylglycineamide Ribonucleotide 46</p> <p>4.2.4 Synthesis of Formylglycinamidine Ribonucleotide 47</p> <p>4.2.5 Synthesis of Aminoimidazole Ribonucleotide 47</p> <p>4.2.6 Synthesis of Aminoimidazole Carboxylate Ribonucleotide 48</p> <p>4.2.7 Synthesis of Aminoimidazole Succinocarboxamide Ribonucleotide 48</p> <p>4.2.8 Synthesis of Aminoimidazole Carboxamide Ribonucleotide 49</p> <p>4.2.9 Synthesis of IMP via Formamidoimidazole Carboxamide Ribonucleotide 49</p> <p>4.2.10 Synthesis of AMP 50</p> <p>4.2.11 Synthesis of GMP 51</p> <p>4.3 Summary 52</p> <p>References 52</p> <p><b>5 Salvage Pathways of Purine Nucleotide Biosynthesis </b><b>55</b></p> <p>5.1 Introduction 55</p> <p>5.2 Characteristics of Purine Salvage in Plants 56</p> <p>5.3 Properties of Purine Phosphoribosyltransferases 59</p> <p>5.3.1 Adenine Phosphoribosyltransferase 59</p> <p>5.3.2 Hypoxanthine/Guanine Phosphoribosyltransferase 59</p> <p>5.3.3 Xanthine Phosphoribosyltransferase 62</p> <p>5.4 Properties of Nucleoside Kinases 62</p> <p>5.4.1 Adenosine Kinase 62</p> <p>5.4.2 Inosine/Guanosine Kinase 64</p> <p>5.4.3 Deoxyribonucleoside Kinases 64</p> <p>5.5 Properties of Nucleoside Phosphotransferase 65</p> <p>5.6 Role of Purine Salvage in Plants 66</p> <p>5.7 Summary 66</p> <p>References 66</p> <p><b>6 Interconversion of Purine Nucleotides </b><b>71</b></p> <p>6.1 Introduction 71</p> <p>6.2 Deamination Reactions 71</p> <p>6.2.1 Routes of Deamination of Adenine Ring 73</p> <p>6.2.2 AMP Deaminase 73</p> <p>6.2.3 Routes of Deamination of Guanine Ring 74</p> <p>6.2.4 Guanosine Deaminase 75</p> <p>6.3 Dephosphorylation Reactions 75</p> <p>6.4 Glycosidic Bond Cleavage Reactions 76</p> <p>6.4.1 Adenosine Nucleosidase 76</p> <p>6.4.2 Inosine/Guanosine Nucleosidase 78</p> <p>6.4.3 Non-specific Purine Nucleosidases 78</p> <p>6.4.4 Recombinant Non-Specific Nucleosidases 78</p> <p>6.5 <i>In Situ</i> Metabolism of <sup>14</sup>C-Labelled Purine Nucleotides 79</p> <p>6.5.1 Metabolism of Adenine Nucleotides 79</p> <p>6.5.2 Metabolism of Guanine Nucleotides 80</p> <p>6.6 <i>In Situ</i> Metabolism of Purine Nucleosides and Bases 80</p> <p>6.6.1 Metabolism of Adenine and Adenosine 82</p> <p>6.6.2 Metabolism of Guanine and Guanosine 83</p> <p>6.6.3 Metabolism of Hypoxanthine and Inosine 84</p> <p>6.6.4 Metabolism of Xanthine and Xanthosine 84</p> <p>6.6.5 Metabolism of Deoxyadenosine and Deoxyguanosine 85</p> <p>6.7 Summary 88</p> <p>References 89</p> <p><b>7 Degradation of Purine Nucleotides </b><b>95</b></p> <p>7.1 Introduction 95</p> <p>7.2 (<i>S</i>)-Allantoin Biosynthesis from Xanthine 97</p> <p>7.2.1 Xanthine Dehydrogenase 99</p> <p>7.2.2 Urate Oxidase 100</p> <p>7.2.3 Allantoin Synthase 101</p> <p>7.3 Catabolism of (<i>S</i>)-Allantoin 101</p> <p>7.3.1 Allantoinase 103</p> <p>7.3.2 Allantoate Amidohydrolase 104</p> <p>7.3.3 (<i>S</i>)-Ureidoglycine Aminohydrolase 104</p> <p>7.3.4 Allantoate Amidinohydrolase 105</p> <p>7.3.5 Ureidoglycolate Amidohydrolase 105</p> <p>7.3.6 (<i>S</i>)-Ureidoglycolate-urea Lyase 105</p> <p>7.3.7 Urease 105</p> <p>7.4 Purine Nucleotide Catabolism in Plants 106</p> <p>7.5 Accumulation and Utilization of Ureides in Plants 107</p> <p>7.5.1 Ureides in Plant Tissues and Xylem Sap 107</p> <p>7.5.2 Role of Ureides in Nitrogen Storage and Transport 109</p> <p>7.5.3 Role of Ureides in Germination and Development of Seeds 109</p> <p>7.5.4 Ureide Formation in Nodules of Tropical Legumes 110</p> <p>7.5.5 Other Role of Ureides in Plants 110</p> <p>7.6 Summary 111</p> <p>References 111</p> <p><b>Part III Pyrimidine Nucleotide Metabolism </b><b>117</b></p> <p><b>8 Pyrimidine Nucleotide Biosynthesis De Novo </b><b>119</b></p> <p>8.1 Introduction 119</p> <p>8.2 Reactions and Enzymes of the<i> De Novo </i>Biosynthesis 121</p> <p>8.2.1 Synthesis of Carbamoyl-phosphate 121</p> <p>8.2.2 Formation of Carbamoyl-aspartate 123</p> <p>8.2.3 Formation of Dihydroorotase from Carbamoyl-aspartate 123</p> <p>8.2.4 Formation of Orotate from Dihydroorotate 124</p> <p>8.2.5 Synthesis of UMP from Orotate 125</p> <p>8.2.6 Synthesis of CTP from UTP 126</p> <p>8.3 Control Mechanism of<i> De Novo </i>Pyrimidine Ribonucleotide Biosynthesis 127</p> <p>8.3.1 Fine Control of the<i> De Novo </i>Pathway 127</p> <p>8.3.2 Coarse Control of the<i> De Novo </i>Pathway 129</p> <p>8.4 Biosynthesis of Thymidine Nucleotide 129</p> <p>8.4.1 Formation of dUMP 129</p> <p>8.4.2 Conversion of UMP to dUMP via dUTP 130</p> <p>8.4.3 Conversion of dUMP to dTMP 130</p> <p>8.4.4 Thymidine Monophosphate Kinase 131</p> <p>8.5 Summary 131</p> <p>References 131</p> <p><b>9 Salvage Pathways of Pyrimidine Nucleotide Biosynthesis </b><b>137</b></p> <p>9.1 Introduction 137</p> <p>9.2 Characteristics of Pyrimidine Salvage in Plants 137</p> <p>9.3 Enzymes of Pyrimidine Salvage 139</p> <p>9.3.1 Uracil Phosphoribosyl Transferase 140</p> <p>9.3.2 Uridine/Cytidine Kinase 142</p> <p>9.3.3 Thymidine Kinase 143</p> <p>9.3.4 Deoxyribonucleoside Kinase 144</p> <p>9.3.5 Nucleoside Phosphotransferase 144</p> <p>9.4 Role of Pyrimidine Salvage in Plants 145</p> <p>9.5 Summary 146</p> <p>References 146</p> <p><b>10 Interconversion of Pyrimidine Nucleotides </b><b>149</b></p> <p>10.1 Introduction 149</p> <p>10.2 Deaminase Reactions 149</p> <p>10.2.1 Cytidine Deaminase 149</p> <p>10.2.2 Cytosine Deaminase 152</p> <p>10.2.3 Deoxycytidylate Deaminase 152</p> <p>10.3 Nucleosidase and Phosphorylase Reactions 152</p> <p>10.3.1 Uridine Nucleosidase 152</p> <p>10.3.2 Thymidine Phosphorylase 153</p> <p>10.4 <i>In Situ </i>Metabolism of <sup>14</sup>C-Labelled Pyrimidines 153</p> <p>10.4.1 Metabolic Fate of Orotate 154</p> <p>10.4.2 Metabolic Fate of Uridine and Uracil 154</p> <p>10.4.3 Metabolic Fate of Cytidine and Cytosine 156</p> <p>10.4.4 Metabolic Fate of Deoxycytidine 157</p> <p>10.4.5 Metabolic Fate of Thymidine 158</p> <p>10.5 Summary 159</p> <p>References 160</p> <p><b>11 Degradation of Pyrimidine Nucleotides </b><b>165</b></p> <p>11.1 Introduction 165</p> <p>11.2 Enzymes Involved in the Degradation Routes of Pyrimidines 166</p> <p>11.2.1 Dihydropyrimidine Dehydrogenase 167</p> <p>11.2.2 Dihydropyrimidinase 167</p> <p>11.2.3 𝛽-Ureidopropionase 168</p> <p>11.3 The Metabolic Fate of Uracil and Thymine 168</p> <p>11.4 Summary 169</p> <p>References 170</p> <p><b>Part IV Physiological Aspects of Nucleotide Metabolism </b><b>173</b></p> <p><b>12 Growth and Development </b><b>175</b></p> <p>12.1 Introduction 175</p> <p>12.2 Embryo Maturation 175</p> <p>12.3 Germination 180</p> <p>12.3.1 Purine Metabolism in Germination 180</p> <p>12.3.2 Pyrimidine Metabolism in Germination 183</p> <p>12.4 Organogenesis 185</p> <p>12.5 Breaking Bud Dormancy 186</p> <p>12.6 Fruit Ripening 186</p> <p>12.7 Storage Organ Development and Sprouting 186</p> <p>12.8 Suspension-Cultured Cells 187</p> <p>12.8.1 Nucleotide Pools 187</p> <p>12.8.2 Nucleotide Biosynthesis 188</p> <p>12.8.3 Nucleotide Availability 188</p> <p>12.9 Molecular Studies 189</p> <p>12.10 Summary 189</p> <p>References 189</p> <p><b>13 Environmental Factors and Nucleotide Metabolism </b><b>195</b></p> <p>13.1 Introduction 195</p> <p>13.2 Effect of Phosphate on Nucleotide Metabolism 195</p> <p>13.3 Effect of Salts on Nucleotide Metabolism 199</p> <p>13.4 Effect of Water Stress 202</p> <p>13.5 Effect of Wound Stress 202</p> <p>13.6 Effect of Iron Deficiency 205</p> <p>13.7 Effect of Light 206</p> <p>13.8 Summary 206</p> <p>References 206</p> <p><b>Part V Purine Alkaloids </b><b>211</b></p> <p><b>14 Occurrence of Purine Alkaloids </b><b>213</b></p> <p>14.1 Introduction 213</p> <p>14.2 Chemical Structure of Purine Alkaloids 213</p> <p>14.3 Occurrence of Purine Alkaloids in Plants 215</p> <p>14.3.1 Purine Alkaloids in Tea and Related Species 215</p> <p>14.3.2 Purine Alkaloids in Coffee and Related Species 218</p> <p>14.3.3 Purine Alkaloids in Maté 220</p> <p>14.3.4 Purine Alkaloids in Cacao and Related Species 221</p> <p>14.3.5 Purine Alkaloids in Cola Species 223</p> <p>14.3.6 Purine Alkaloids in Guaraná and Related Species 223</p> <p>14.3.7 Purine Alkaloids in Citrus Species 224</p> <p>14.3.8 Purine Alkaloids in Other Plants 225</p> <p>14.4 Summary 226</p> <p>References 226</p> <p><b>15 Biosynthesis of Purine Alkaloids </b><b>231</b></p> <p>15.1 Introduction 231</p> <p>15.2 A Brief History of Caffeine Biosynthesis Research 231</p> <p>15.3 Caffeine Biosynthesis Pathway 234</p> <p>15.3.1 <i>N</i>-Methyltransferase Nomenclature 236</p> <p>15.3.2 Formation of 7-Methylxanthine from Xanthosine 236</p> <p>15.3.3 7-Methylxanthosine Synthase 237</p> <p>15.3.4 <i>N</i>-Methylnucleosidase 240</p> <p>15.3.5 Formation of Caffeine from 7-Methylxanthine 241</p> <p>15.3.6 Caffeine Synthase 241</p> <p>15.3.7 Theobromine Synthase 244</p> <p>15.4 Genes and Proteins of Caffeine Synthase Family 245</p> <p>15.5 Xanthosine Biosynthesis from Purine Nucleotides 249</p> <p>15.5.1 <i>De Novo</i> Purine Route 249</p> <p>15.5.2 Adenosine Monophosphate Route 251</p> <p>15.5.3 <i>S</i>-Adenosyl-L-methionine Cycle Route 251</p> <p>15.5.4 Nicotinamide Adenine Diphosphate Catabolism Route 252</p> <p>15.5.5 Guanosine Monophosphate Route 253</p> <p>15.6 Summary 253</p> <p>References 253</p> <p><b>16 Physiological and Ecological Aspects of Purine Alkaloid Biosynthesis </b><b>259</b></p> <p>16.1 Introduction 259</p> <p>16.2 Physiology of Caffeine Biosynthesis 259</p> <p>16.2.1 Purine Alkaloid Biosynthesis in Different Species 261</p> <p>16.2.2 <i>Camellia </i>261</p> <p>16.2.3 <i>Coffea </i>264</p> <p>16.2.4 <i>Theobroma</i> 264</p> <p>16.2.5 Maté 266</p> <p>16.2.6 Guaraná 267</p> <p>16.2.7 <i>Citrus </i>268</p> <p>16.3 Subcellular Localization of Caffeine Biosynthesis 268</p> <p>16.3.1 Caffeine Synthase 268</p> <p>16.3.2 The <i>De Novo</i> Route Enzymes 269</p> <p>16.3.3 The AMP Route Enzymes 270</p> <p>16.3.4 The SAM Route Enzymes 270</p> <p>16.3.5 Subcellular Localization and Transport of Intermediates 270</p> <p>16.4 Regulation of Caffeine Biosynthesis 270</p> <p>16.5 Ecological Roles of Caffeine 271</p> <p>16.5.1 Allelopathic Function Theory 271</p> <p>16.5.2 Effect of Caffeine on Plant Growth 272</p> <p>16.5.3 Allelopathy in Natural Ecosystems 273</p> <p>16.5.4 Chemical DefenceTheory 274</p> <p>16.6 Summary 274</p> <p>References 275</p> <p><b>17 Metabolism of Purine Alkaloids and Biotechnology </b><b>281</b></p> <p>17.1 Introduction 281</p> <p>17.2 Metabolism of Purine Alkaloids 281</p> <p>17.2.1 Methylurate Biosynthesis 281</p> <p>17.2.2 The Major Pathway of Caffeine Degradation 282</p> <p>17.2.3 Purine Catabolic Pathways in Alkaloid Plants 284</p> <p>17.3 Diversity of Purine Alkaloid Metabolism in Plants 285</p> <p>17.3.1 <i>Coffea </i>Species 285</p> <p>17.3.2 <i>Camellia </i>Species 286</p> <p>17.3.3 Maté Species 290</p> <p>17.3.4 Cacao Species 290</p> <p>17.3.5 Other Plant Species 290</p> <p>17.3.6 Bacteria 291</p> <p>17.4 Biotechnology of Purine Alkaloids 293</p> <p>17.4.1 Decaffeinated Coffee Plants 293</p> <p>17.4.2 Decaffeinated Tea Plants 294</p> <p>17.5 Caffeine-Producing Transgenic Plants 295</p> <p>17.5.1 Antiherbivore Activity 295</p> <p>17.5.2 Antipathogen Activity 296</p> <p>17.6 Summary 298</p> <p>References 298</p> <p><b>Part VI Pyridine Nucleotide Metabolism </b><b>301</b></p> <p><b>18 Pyridine (Nicotinamide Adenine) Nucleotide Biosynthesis De Novo </b><b>303</b></p> <p>18.1 Introduction 303</p> <p>18.2 Two Distinct Pathways of De Novo Nicotinate Mononucleotide Biosynthesis 303</p> <p>18.3 The Outline of the<i> De Novo </i>Pathway of NAD Biosynthesis in Plants 304</p> <p>18.4 Enzymes Involved in<i> De Novo </i>NAD Synthesis in Plants 307</p> <p>18.4.1 l-Aspartate Oxidase and Quinolinate Synthase 308</p> <p>18.4.2 Quinolinate Phosphoribosyltransferase 309</p> <p>18.4.3 Nicotinate Mononucleotide Adenylyltransferase 309</p> <p>18.4.4 NAD Synthetase 310</p> <p>18.4.5 NAD Kinase 310</p> <p>18.5 Summary 310</p> <p>References 310</p> <p><b>19 Pyridine Nucleotide Cycle </b><b>315</b></p> <p>19.1 Introduction 315</p> <p>19.2 Pyridine Nucleotide Cycle 315</p> <p>19.2.1 Major Pyridine Nucleotide Cycles in Plants 317</p> <p>19.2.2 Alternative Pyridine Nucleotide Cycles in Plants 318</p> <p>19.2.3 Rate-Limiting Step of the Pyridine Cycle 319</p> <p>19.3 Catabolism of NAD 320</p> <p>19.3.1 Reactions from NAD to Nicotinate 320</p> <p>19.3.2 Degradation of Pyrimidine Ring 320</p> <p>19.3.3 Nicotinate Conversion to Nicotinate-<i>N</i>-Glucoside and <i>N</i>-Methylnicotinate 321</p> <p>19.4 Enzymes Involved in NAD Catabolism 321</p> <p>19.4.1 Direct NAD Cleavage Enzymes 321</p> <p>19.4.2 NAD Pyrophosphatase 321</p> <p>19.4.3 5′-Nucleotidase and Nicotinamide Riboside Nucleosidase 322</p> <p>19.4.4 Nicotinamidase and Nicotinamide Riboside Deaminase 322</p> <p>19.5 Salvage of Nicotinamide and Nicotinate 323</p> <p>19.5.1 Nicotinate Phosphoribosyltransferase 323</p> <p>19.5.2 Nicotinate Riboside Kinase 324</p> <p>19.6 Summary 325</p> <p>References 325</p> <p><b>Part VII Pyridine Alkaloids </b><b>329</b></p> <p><b>20 Occurrence and Biosynthesis of Pyridine Alkaloids </b><b>331</b></p> <p>20.1 Introduction 331</p> <p>20.2 Occurrence of Pyridine Alkaloids 333</p> <p>20.2.1 Trigonelline in Plants 333</p> <p>20.2.2 Other Pyridine Alkaloids in Plants 334</p> <p>20.3 Biosynthesis of Pyridine Alkaloids 335</p> <p>20.3.1 Trigonelline Biosynthesis 335</p> <p>20.3.2 Nicotinate<i> N</i>-Glucoside Biosynthesis 336</p> <p>20.3.3 The Diversity of Biosynthetic Reactions 337</p> <p>20.3.3.1 Ferns 338</p> <p>20.3.3.2 Gymnosperms 338</p> <p>20.3.3.3 Angiosperms 339</p> <p>20.3.3.4 Nicotinate Conjugate Formation 340</p> <p>20.3.4 Biosynthesis of Ricinine 341</p> <p>20.3.5 Biosynthesis of Nicotine (Pyridine Ring) 343</p> <p>20.4 Summary 345</p> <p>References 345</p> <p><b>21 Physiological Aspect and Biotechnology of Trigonelline </b><b>351</b></p> <p>21.1 Introduction 351</p> <p>21.2 Physiological Aspect of Trigonelline Biosynthesis 351</p> <p>21.2.1 Coffee 351</p> <p>21.2.2 Leguminous Plants 354</p> <p>21.3 Physiological Aspect of Nicotinate N-Glucoside Biosynthesis 356</p> <p>21.4 The Role of Trigonelline in Plants 356</p> <p>21.4.1 Role of Trigonelline as a Nutrient Source 357</p> <p>21.4.2 Role of Trigonelline as a Compatible Solute 357</p> <p>21.4.3 Trigonelline and Nyctinasty 358</p> <p>21.4.4 Cell Cycle Regulation 358</p> <p>21.4.5 Detoxification of Nicotinate 359</p> <p>21.4.6 Signal Transduction 360</p> <p>21.4.7 Role of Host Selection by Herbivores 360</p> <p>21.5 Biotechnology of Trigonelline 360</p> <p>21.6 Summary 362</p> <p>References 363</p> <p><b>Part VIII Other Nucleotide-Related Metabolites </b><b>367</b></p> <p><b>22 Sugar Nucleotides </b><b>369</b></p> <p>22.1 Introduction 369</p> <p>22.2 The Sugar Nucleotide Moiety 370</p> <p>22.3 Enzymes of Sugar Nucleotide Biosynthesis 371</p> <p>22.3.1 UDP-Glucose Pyrophosphorylase 371</p> <p>22.3.2 UDP-Sugar Pyrophosphorylase 374</p> <p>22.3.3 Sucrose Synthase 376</p> <p>22.4 Localization of UDP-Glucose-Producing Enzymes 377</p> <p>22.5 UDP-Glucose-Interconversion 377</p> <p>22.6 Other Metabolites 379</p> <p>22.6.1 Cyclic Nucleotides 379</p> <p>22.6.2 Diadenosine Tetraphosphate 381</p> <p>22.6.3 Purine Alkaloid Glucosides 382</p> <p>22.7 Summary 382</p> <p>References 382</p> <p><b>23 Cytokinins 387</b></p> <p>23.1 Introduction 387</p> <p>23.2 Adenosine Phosphate-Isopentenyl Formation 388</p> <p>23.3 <i>trans</i>-Zeatin Phosphate Synthesis 389</p> <p>23.4 Formation of Cytokinin Bases 389</p> <p>23.5 Effect of Nucleotide Enzymes in Cytokinins 390</p> <p>23.5.1 Cytokinin Inactivation by Adenine Phosphoribosyltransferase 390</p> <p>23.5.2 Homeostasis of Cytokinin by Adenosine Kinase 392</p> <p>23.5.3 Endodormancy of Potato and Purine Nucleoside Phosphorylase 392</p> <p>23.6 New Purine-Related Plant Growth Regulators 392</p> <p>23.7 Summary 393</p> <p>References 394</p> <p><b>Part IX Dietary Plant Alkaloids, Their Bioavailability, and Potential Impact on Human Health </b><b>397</b></p> <p><b>24 Bioavailability and Potential Impact on Human Health of Caffeine, Theobromine, and Trigonelline </b><b>399</b></p> <p>24.1 Caffeine 399</p> <p>24.1.1 Dietary Caffeine 399</p> <p>24.1.2 Bioavailability and Bioactivity of Caffeine 400</p> <p>24.2 Theobromine 404</p> <p>24.2.1 Interactions with Flavan-3-ols 404</p> <p>24.2.2 Toxicity ofTheobromine 406</p> <p>24.3 Trigonelline 406</p> <p>24.3.1 Dietary Trigonelline 406</p> <p>24.3.2 Bioavailability and Bioactivity of Trigonelline 407</p> <p>24.4 Summary 409</p> <p>References 409</p> <p>Index 415</p>
<p><b>Professor Hiroshi Ashihara</b> is an Emeritus Professor at the Ochanomizu University, Tokyo, Japan. <p><b>Dr Iziar A. Ludwig</b> is a Postdoctoral Research Associate at the School of Medicine and Life Sciences, University Rovira I Virgili, Reus, Spain. <p><b>Professor Alan Crozier</b> is an Honorary Senior Research Fellow at the Department of Nutrition, University of California, Davis, CA, USA and the School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK.
<p>All organisms produce nucleobases, nucleosides, and nucleotides of purines and pyrimidines. However, while there have been a number of texts on nucleotide metabolism in microorganisms and humans, the presence of these phenomena in plant life has gone comparatively unexplored. This ground-breaking new book is the first to focus exclusively on the aspects of purine nucleotide metabolism and function that are particular to plants, making it a unique and essential resource. <p>The authors provide a comprehensive break down of purine nucleotide structures and metabolic pathways, covering all facets of the topic. Furthermore, they explain the role that purine nucleotides can play in plant development, as well as the effects they may have on human health when ingested. <i>Plant Nucleotide Metabolism</i> offers a unique and important resource to all students, researchers, and lecturers working in plant biochemistry, physiology, chemistry, agricultural sciences, nutrition, and associated fields of research.

Diese Produkte könnten Sie auch interessieren:

The Air Spora
The Air Spora
von: Maureen E. Lacey, Jonathan S. West
PDF ebook
213,99 €
Vegetables I
Vegetables I
von: Jaime Prohens-Tomás, Fernando Nuez
PDF ebook
287,83 €
Handbook of Poisonous and Injurious Plants
Handbook of Poisonous and Injurious Plants
von: Lewis S. Nelson, L.R. Goldfrank, Andrew Weil, Richard D. Shih, Michael J. Balick
PDF ebook
117,69 €