Details

Practical Food Safety


Practical Food Safety

Contemporary Issues and Future Directions
1. Aufl.

von: Rajeev Bhat, Vicente M. Gómez-López

180,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 31.03.2014
ISBN/EAN: 9781118474594
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The past few years have witnessed an upsurge in incidences relating to food safety issues, which are all attributed to different factors. Today, with the increase in knowledge and available databases on food safety issues, the world is witnessing tremendous efforts towards the development of new, economical and environmentally-friendly techniques for maintaining the quality of perishable foods and agro-based commodities. The intensification of food safety concerns reflects a major global awareness of foods in world trade. Several recommendations have been put forward by various world governing bodies and committees to solve food safety issues, which are all mainly targeted at benefiting consumers. In addition, economic losses and instability to a particular nation or region caused by food safety issues can be huge. Various ‘non-dependent’ risk factors can be involved with regard to food safety in a wide range of food commodities such as fresh fruits, vegetables, seafood, poultry, meat and meat products. Additionally, food safety issues involves a wide array of issues including processed foods, packaging, post-harvest preservation, microbial growth and spoilage, food poisoning, handling at the manufacturing units, food additives, presence of banned chemicals and drugs, and more. Rapid change in climatic conditions is also playing a pivotal role with regard to food safety issues, and increasing the anxiety about our ability to feed the world safely.</p> <p><i>Practical Food Safety: Contemporary Issues and Future Directions</i> takes a multi-faceted approach to the subject of food safety, covering various aspects ranging from microbiological to chemical issues, and from basic knowledge to future perspectives. This is a book exclusively designed to simultaneously encourage consideration of the present knowledge and future possibilities of food safety. This book also covers the classic topics required for all books on food safety, and encompasses the most recent updates in the field. Leading researchers have addressed new issues and have put forth novel research findings that will affect the world in the future, and suggesting how these should be faced.</p> <p>This book will be useful for researchers engaged in the field of food science and food safety, food industry personnel engaged in safety aspects, and governmental and non-governmental agencies involved in establishing guidelines towards establishing safety measures for food and agricultural commodities.</p>
List of Contributors xv <p>Foreword xix</p> <p>Preface xxi</p> <p><b>1 Food Safety: A Global Perspective 1</b><br /> <i>Karl R. Matthews</i></p> <p>1.1 Introduction 1</p> <p>1.2 National and global food safety events 2</p> <p>1.3 Foodborne illness outbreaks: imports and exports 3</p> <p>1.4 Regulations impacting food safety 4</p> <p>1.5 China’s food safety growing pains 6</p> <p>1.6 Food safety and product testing 7</p> <p>1.7 Fresh fruits and vegetables safety 7</p> <p>1.8 Conclusions and future outlook 8</p> <p>References 8</p> <p><b>2 Food Safety: Consumer Perceptions and Practices 11</b><br /> <i>Anne Wilcock and Brita Ball</i></p> <p>2.1 Introduction 11</p> <p>2.2 Novel technologies and issues 13</p> <p>2.2.1 Irradiation 14</p> <p>2.2.2 Genetic modification 15</p> <p>2.2.3 Nanotechnology 16</p> <p>2.2.4 Hormone use in food animals 17</p> <p>2.2.5 Organic foods 19</p> <p>2.2.6 Deliberate and accidental contamination 19</p> <p>2.3 Consumer attitudes, knowledge and behavior 21</p> <p>2.3.1 Types of food safety issues 21</p> <p>2.3.2 Knowledge versus behavior 22</p> <p>2.3.3 Influence of consumer demographics 23</p> <p>2.3.4 Knowledge and behavior 23</p> <p>2.4 Conclusion and outlook 24</p> <p>References 25</p> <p><b>3 Educating for Food Safety 31</b><br /> <i>Angela M. Fraser and Cortney Miller</i></p> <p>3.1 Introduction 31</p> <p>3.2 Food safety education targeting food handlers 33</p> <p>3.3 Effective food safety education interventions 38</p> <p>3.3.1 Intervention design 38</p> <p>3.3.2 Instructional strategies 41</p> <p>3.3.3 Learner assessment 43</p> <p>3.3.4 Training in languages other than English 44</p> <p>3.4 Future outlook 45</p> <p>Acknowledgements 45</p> <p>References 46</p> <p><b>4 Food Safety Training in Food Services 49</b><br /> <i>Caroline Opolski Medeiros, Suzi Barletto Cavalli, and Elisabete Salay</i></p> <p>4.1 Introduction 49</p> <p>4.2 Legislation about training 50</p> <p>4.2.1 European Union 50</p> <p>4.2.2 United States 50</p> <p>4.2.3 Mercosur 51</p> <p>4.2.4 Brazil 51</p> <p>4.3 Evaluation of the programs 51</p> <p>4.4 Planning the training programs 52</p> <p>4.4.1 Knowing the target public 52</p> <p>4.4.2 Training themes 52</p> <p>4.4.3 Training methods 53</p> <p>4.4.4 Duration of training programs 58</p> <p>4.4.5 Language used in training 58</p> <p>4.5 Conclusions and future outlook 58</p> <p>References 59</p> <p><b>5 Product Tracing Systems 63</b><br /> <i>Jennifer McEntire and Tejas Bhatt</i></p> <p>5.1 Introduction 63</p> <p>5.2 Traceability: meaning and context 64</p> <p>5.2.1 Tracebacks, traceforwards, and recalls 64</p> <p>5.2.2 Traceability system attributes 65</p> <p>5.3 International traceability regulations 65</p> <p>5.3.1 Codex 66</p> <p>5.4 Private global traceability standards 67</p> <p>5.4.1 International Standards Organization (ISO) 67</p> <p>5.4.2 Global Food Safety Initiative (GFSI) 67</p> <p>5.4.3 GS1 68</p> <p>5.5 Country-specific traceability requirements 68</p> <p>5.5.1 Traceability in developed economies 69</p> <p>5.5.2 Traceability through regulatory consolidation 72</p> <p>5.5.3 Traceability through transformative events 72</p> <p>5.5.4 Traceability in developing countries 73</p> <p>5.6 Costs and benefits to traceability 75</p> <p>5.6.1 Societal benefits 75</p> <p>5.6.2 Government benefits 75</p> <p>5.6.3 Industry costs and benefits 75</p> <p>5.7 Challenges 76</p> <p>5.7.1 Education 76</p> <p>5.7.2 Technology 76</p> <p>5.7.3 Commingling: a challenge to traceability 77</p> <p>5.8 The role of technology in traceability 77</p> <p>5.9 Steps to achieve a global, traceable supply chain 78</p> <p>5.10 Summary and outlook 79</p> <p>Acknowledgements 79</p> <p>References 79</p> <p><b>6 Linking Local Suppliers to Global Food Markets: A Critical Analysis of Food Safety Issues in Developing Countries 83</b><br /> <i>Sapna A. Narula and Neeraj Dangi</i></p> <p>6.1 Introduction 84</p> <p>6.2 The rise of global supply chains 85</p> <p>6.3 Global trade opportunities for developing countries 85</p> <p>6.4 Food safety issues: traceability, certification, labelling and phytosanitary 86</p> <p>6.4.1 Traceability and certification 86</p> <p>6.4.2 Labelling 87</p> <p>6.4.3 Phytosanitary issues 88</p> <p>6.5 Role of public standards 88</p> <p>6.5.1 Codex Alimentarius 89</p> <p>6.5.2 Global Food Safety Initiative (GFSI) 89</p> <p>6.5.3 Food safety initiatives: Philippines 89</p> <p>6.5.4 Strengthening food safety initiatives: India 90</p> <p>6.6 Role of private standards in food supply chains 90</p> <p>6.7 Challenges faced by developing countries in food safety implementation 92</p> <p>6.7.1 Development of cold chains in India 92</p> <p>6.8 Conclusions and future outlook 93</p> <p>References 96</p> <p><b>7 Achieving Quality Chemical Measurements in Foods 99</b><br /> <i>Yiu-chung Wong and Michael Walker</i></p> <p>7.1 Introduction 100</p> <p>7.2 Quality assurance in food analysis 101</p> <p>7.2.1 Method validation 101</p> <p>7.2.2 Control chart 107</p> <p>7.2.3 Traceability 108</p> <p>7.2.4 Measurement uncertainty 110</p> <p>7.2.5 Laboratory accreditation 111</p> <p>7.3 Metrology in chemistry 111</p> <p>7.3.1 Assigned values in PT programmes 114</p> <p>7.3.2 PT on melamine in milk 115</p> <p>7.3.3 PT on cypermethrin in green tea 117</p> <p>7.3.4 Insights from the two described PT 120</p> <p>7.4 Conclusions and future outlook 120</p> <p>Acknowledgements 120</p> <p>References 121</p> <p><b>8 Protection of the Agri-Food Chain by Chemical Analysis: The European Context 125</b><br /> <i>Michael Walker and Yiu-chung Wong</i></p> <p>8.1 Introduction 125</p> <p>8.2 European food and feed law 127</p> <p>8.3 Chemical contaminants 128</p> <p>8.3.1 Mycotoxins 129</p> <p>8.3.2 Aluminium in noodles 135</p> <p>8.3.3 Veterinary residues: Nitrofurans 137</p> <p>8.3.4 Non-regulated contaminants 138</p> <p>8.4 Resolution of disputed chemical results 139</p> <p>8.5 Conclusions and future outlook 140</p> <p>Acknowledgements 140</p> <p>References 140</p> <p><b>9 Pesticide Residues in Food: Health Implications for Children and Women 145</b><br /> <i>Muhammad Atif Randhawa, Salim-ur-Rehman, Faqir Muhammad Anjum and Javaid Aziz Awan</i></p> <p>9.1 Introduction 145</p> <p>9.2 Pesticides 146</p> <p>9.2.1 Definition of pesticide 146</p> <p>9.2.2 History of pesticide production and application 146</p> <p>9.2.3 Worldwide production and consumption of pesticides 146</p> <p>9.2.4 Benefits and risks of pesticide application 147</p> <p>9.3 Pathway of pesticide residues in the food chain 147</p> <p>9.3.1 Pesticide residues in soil and groundwater 147</p> <p>9.3.2 Plant uptake of pesticide residues 149</p> <p>9.3.3 Pesticide residues in feed and food 149</p> <p>9.3.4 Pesticide residues in livestock/animal tissues 149</p> <p>9.4 Pesticide residue dissipation during processing 150</p> <p>9.4.1 Dissipation of pesticide residues by washing with water 150</p> <p>9.4.2 Dissipation of pesticide residues by dipping in chemical solutions 150</p> <p>9.4.3 Dissipation of pesticide residues by heat treatment 150</p> <p>9.4.4 Dissipation of pesticide residues by low-temperature storage 153</p> <p>9.5 Pesticide residues in food and food products 153</p> <p>9.5.1 Pesticide residues in fruits and vegetables 153</p> <p>9.5.2 Pesticide residues in milk 155</p> <p>9.5.3 Pesticide residues in organic foods 155</p> <p>9.6 Pesticide residues in humans 155</p> <p>9.6.1 Pathways of pesticide residues in women 156</p> <p>9.6.2 Pathways of pesticide residues in children 157</p> <p>9.7 Health repercussions 157</p> <p>9.8 Measures to combat pesticide exposure 159</p> <p>References 160</p> <p><b>10 The Need for a Closer Look at Pesticide Toxicity during GMO Assessment 167</b><br /> <i>Robin Mesnage and Gilles-Éric Séralini</i></p> <p>10.1 Purpose, aim and scope 168</p> <p>10.2 A silent pandemic 168</p> <p>10.2.1 First observations on animal and human reproduction 168</p> <p>10.2.2 Endocrine and nervous disruptions due to the aromatic structure of pesticides 169</p> <p>10.3 Link between pesticides and agricultural GMOs 171</p> <p>10.4 Focus on Roundup toxicity in GMOs 172</p> <p>10.4.1 Adjuvants: glyphosate is not the major toxicant in Roundup 172</p> <p>10.4.2 Glyphosate action in non-target species 173</p> <p>10.4.3 Long-term effects of Roundup or its residues in GMOs 174</p> <p>10.5 Agricultural GMOs producing Bt are new insecticidal plants 176</p> <p>10.6 Side-effects of the genetic modification itself 177</p> <p>10.6.1 Specific side effects of the transgene expression 177</p> <p>10.6.2 Insertional mutagenesis or new unexpected/unexplainable metabolism 178</p> <p>10.7 Limits and difficulties of interpretations in toxicity tests 178</p> <p>10.8 The relevance of in vivo findings and length of the nutritional tests 180</p> <p>10.8.1 Insufficiencies of in vitro tests 180</p> <p>10.8.2 Limitations of 90-day-long tests 181</p> <p>10.8.3 The need for additional tests including long-term tests 181</p> <p>10.8.4 Unraveling the effects of mixtures 182</p> <p>10.9 Conclusions and future outlook 183</p> <p>References 183</p> <p><b>11 What Have We Learnt from the Melamine-tainted Milk Incidents in China? 191</b><br /> <i>Miao Hong, Cui Xia, Zhu Pan, and Wu Yongning</i></p> <p>11.1 Introduction 191</p> <p>11.2 Melamine and its analogs 192</p> <p>11.3 Melamine incidents 193</p> <p>11.3.1 Melamine-contaminated pet food 193</p> <p>11.3.2 Infant formula 193</p> <p>11.4 Epidemiological studies 193</p> <p>11.4.1 Emergency exposure assessment in China and WHO 194</p> <p>11.4.2 Initial and later risk management responses of Chinese government 195</p> <p>11.4.3 Development of detection of melamine and its analogs in food 196</p> <p>11.5 Screening methods 196</p> <p>11.5.1 Enzyme-linked immunosorbent assay 196</p> <p>11.5.2 High-performance liquid chromatography 197</p> <p>11.5.3 Capillary electrophoresis 197</p> <p>11.6 Confirmatory methods 198</p> <p>11.6.1 Gas chromatography mass spectrometry 198</p> <p>11.6.2 Liquid chromatography mass spectrometry 198</p> <p>11.6.3 Matrix-assisted laser desorption/ionization mass spectrometry 199</p> <p>11.6.4 Application of new technologies 199</p> <p>11.7 Health effects and toxicology of melamine and its analogs 199</p> <p>11.7.1 Health effects 199</p> <p>11.7.2 Toxicology 200</p> <p>11.7.3 Toxicity of melamine 200</p> <p>11.7.4 Toxicity of cyanuric acid 201</p> <p>11.7.5 Combined toxicity 201</p> <p>11.8 Diet exposure assessment from China Total Diet Study 202</p> <p>11.9 Who should be responsible for food safety in China? 203</p> <p>11.9.1 Food safety is the responsibility of the food producer 203</p> <p>11.9.2 Comprehensive and found legislation and regulation system 204</p> <p>11.9.3 Effective supervision and risk management 205</p> <p>11.9.4 Food safety is the responsibility of the consumer 206</p> <p>11.10 Conclusions and future perspectives 206</p> <p>References 206</p> <p><b>12 Heavy Metals of Special Concern to Human Health and Environment 213</b><br /> <i>Sameeh A. Mansour</i></p> <p>12.1 Introduction 213</p> <p>12.2 Mercury 214</p> <p>12.2.1 Occurrence, use and exposure 214</p> <p>12.2.2 Health effects 215</p> <p>12.2.3 Toxicology of mercury 216</p> <p>12.3 Cadmium 216</p> <p>12.3.1 Occurrence, use and exposure 216</p> <p>12.3.2 Health effects 217</p> <p>12.3.3 Cadmium toxicolgy 218</p> <p>12.4 Lead 220</p> <p>12.4.1 Occurrence, use and exposure 220</p> <p>12.4.2 Health effects 220</p> <p>12.4.3 Lead toxicology 221</p> <p>12.5 Chromium 223</p> <p>12.5.1 Occurrence, use and exposure 223</p> <p>12.5.2 Health effects 223</p> <p>12.6 Arsenic 223</p> <p>12.6.1 Occurrence, exposure and dose 223</p> <p>12.6.2 Health effects 224</p> <p>12.7 Nickel 225</p> <p>12.7.1 Occurrence, use and exposure 225</p> <p>12.7.2 Health effects 225</p> <p>12.8 Other essential elements 225</p> <p>12.8.1 Copper 225</p> <p>12.8.2 Selenium 226</p> <p>12.8.3 Manganese 226</p> <p>12.8.4 Molybdenum 226</p> <p>12.8.5 Zinc 227</p> <p>12.8.6 Cobalt 227</p> <p>12.8.7 Iron 227</p> <p>12.8.8 Magnesium 228</p> <p>12.9 Conclusions 228</p> <p>References 229</p> <p><b>13 Monitoring and Health Risk Assessment of Heavy Metal Contamination in Food 235</b><br /> <i>Sameeh A. Mansour</i></p> <p>13.1 Introduction 235</p> <p>13.2 Analytical methods 236</p> <p>13.2.1 Colorimetric methods 236</p> <p>13.2.2 Instrumental methods 237</p> <p>13.3 Contamination levels data 237</p> <p>13.3.1 Vegetables and fruits 237</p> <p>13.3.2 Medicinal plants and herbs 239</p> <p>13.3.3 Grains 240</p> <p>13.3.4 Fish and seafood 241</p> <p>13.3.5 Miscellaneous 242</p> <p>13.4 Heavy metals in non-conventionally produced crops 242</p> <p>13.5 Dietary health risk assessment of heavy metals through consumption of food commodities 246</p> <p>13.5.1 Risk assessment 247</p> <p>13.5.2 Daily dietary index 247</p> <p>13.5.3 Daily intake of metals 247</p> <p>13.5.4 Health risk index 247</p> <p>13.6 Conclusions 252</p> <p>References 253</p> <p><b>14 Heavy Metal Contamination as a Global Problem and the Need for Prevention/Reduction Measurements 257</b><br /> <i>Sameeh A. Mansour</i></p> <p>14.1 Introduction 257</p> <p>14.2 Pathway of heavy metals through the food chain 258</p> <p>14.2.1 Transfer of heavy metals from soil to vegetables 259</p> <p>14.2.2 Heavy metal transfer through irrigation water 260</p> <p>14.2.3 Heavy metals transfer and accumulation in fish 261</p> <p>14.2.4 Heavy metal deposition from air 263</p> <p>14.3 Multiple environmental factors affecting accumulation of heavy metals in food and impact on human health 265</p> <p>14.4 Comparative levels of heavy metals in vegetables and fruits from different countries 268</p> <p>14.5 Removal of heavy metal contamination 271</p> <p>14.5.1 Vegetable/fruit decontamination 271</p> <p>14.5.2 Wastewater treatment 271</p> <p>14.5.3 Plant- and animal-derived materials 271</p> <p>14.5.4 Soil remediation 272</p> <p>14.5.5 Soil bioremediation 273</p> <p>14.5.6 Soil remediation by metal phytoextraction 273</p> <p>14.6 Prevention and reduction of metal contamination in food 274</p> <p>14.7 Recent technologies for removal of heavy metal contaminants 275</p> <p>14.8 Conclusion 275</p> <p>References 275</p> <p><b>15 Radionuclides in Food: Past, Present and Future 281</b><br /> <i>Rajeev Bhat and Vicente M. Gómez-López</i></p> <p>15.1 Introduction 282</p> <p>15.2 Radionuclides in nature 282</p> <p>15.3 Historical background of radioactivity 284</p> <p>15.3.1 Most recent large-scale radiation release 284</p> <p>15.4 Radionuclides and the food chain 286</p> <p>15.5 Measurement of radionuclides in food 289</p> <p>15.6 210Po and 210Pb (polonium and lead) in food 292</p> <p>15.7 Uranium, thorium and radium 294</p> <p>15.8 Other radionuclides in food 297</p> <p>15.9 Minimizing internal exposure by ingestion after long-scale radiation releases 298</p> <p>15.10 Conclusions and future outlook 298</p> <p>References 299</p> <p><b>16 Antinutrients and Toxicity in Plant-based Foods: Cereals and Pulses 311</b><br /> <i>Salim-ur-Rehman, Javaid Aziz Awan, Faqir Muhammad Anjum, and Muhammad Atif Randhawa</i></p> <p>16.1 Introduction 312</p> <p>16.2 Toxicity 313</p> <p>16.2.1 Accidental toxicity 313</p> <p>16.2.2 Toxic compounds in legumes and cereal grains 313</p> <p>16.3 Plant-derived allergens 313</p> <p>16.3.1 Haemagglutinins, trypsin and protease inhibitors 314</p> <p>16.3.2 Goitrogens 315</p> <p>16.3.3 Cyanogens 315</p> <p>16.3.4 Lathyrogens 316</p> <p>16.3.5 Lignins and lignans 317</p> <p>16.3.6 Phytate 318</p> <p>16.3.7 Amylase inhibitors 318</p> <p>16.3.8 Plant phenolics 319</p> <p>16.3.9 Saponins 322</p> <p>16.3.10 Raffinose 322</p> <p>16.3.11 Other antinutrients 322</p> <p>16.4 Mechanisms of antinutritional factors 323</p> <p>16.5 Prevention and detoxification 324</p> <p>16.5.1 Soaking in water 325</p> <p>16.5.2 Boiling/steeping/steaming 325</p> <p>16.5.3 Germination and malting 326</p> <p>16.5.4 Fermentation 326</p> <p>16.6 Health repercussions 326</p> <p>16.7 Conclusions and future outlook 328</p> <p>References 330</p> <p><b>17 N anotechnology Tools to Achieve Food Safety 341</b><br /> <i>Jesús Fernando Ayala-Zavala, Gustavo Adolfo González-Aguilar, María Roberta Ansorena, Emilio Alvarez-Párrilla, and Laura de la Rosa</i></p> <p>17.1 Introduction 341</p> <p>17.2 Types of nanotechnological devices 342</p> <p>17.2.1 Nanosystems to release antimicrobial compounds 343</p> <p>17.2.2 Immobilization of antimicrobial compounds using nanocomposite materials 344</p> <p>17.3 Food safety monitoring systems 345</p> <p>17.3.1 Microbial growth nanosensors 345</p> <p>17.3.2 Toxin sensors 348</p> <p>17.3.3 Food traceability systems 348</p> <p>17.4 Safety regulations regarding food-applied nanotechnology 349</p> <p>17.5 Conclusions and outlook 350</p> <p>References 350</p> <p><b>18 Photonic Methods for Pathogen Inactivation 355</b><br /> <i>Vicente M. Gómez-López and Rajeev Bhat</i></p> <p>18.1 Introduction 355</p> <p>18.1.1 Dosimetry 356</p> <p>18.2 Comparison of CW UV and PL treatment 356</p> <p>18.2.1 Advantages and disadvantages of CW UV light 356</p> <p>18.2.2 Advantages and disadvantages of PL compared to CW UV light 357</p> <p>18.2.3 Inactivation of microorganisms and viruses in vitro 358</p> <p>18.3 Microbial inactivation mechanism 358</p> <p>18.3.1 Continuous UV light 358</p> <p>18.3.2 Pulsed light 359</p> <p>18.4 Sublethal injury, acquired resistance and sensitization 360</p> <p>18.5 Kinetics of microbial inactivation 361</p> <p>18.6 Application of photonic methods 362</p> <p>18.6.1 Application to foods of vegetable origin 362</p> <p>18.6.2 Application to meat products 363</p> <p>18.6.3 Application to liquids 364</p> <p>18.6.4 Application to other foods 365</p> <p>18.6.5 Decomposition of allergens by pulsed light 366</p> <p>18.6.6 Decomposition of mycotoxins by pulsed light 367</p> <p>18.6.7 Photosensitization 367</p> <p>18.7 Concluding remarks and future work 368</p> <p>Acknowledgement 368</p> <p>References 368</p> <p><b>19 Intelligent Packaging and Food Safety 375</b><br /> <i>István Siró</i></p> <p>19.1 Introduction 375</p> <p>19.2 Concepts of intelligent packaging 376</p> <p>19.2.1 Time-temperature indicators 376</p> <p>19.2.2 Current technologies and applications 377</p> <p>19.2.3 State-of-the-art developments 378</p> <p>19.2.4 Possibilities and limitations 379</p> <p>19.3 Radio frequency identification 379</p> <p>19.4 Gas indicators and sensors 381</p> <p>19.4.1 Oxygen indicators 381</p> <p>19.4.2 Carbon-dioxide indicators 383</p> <p>19.5 Gas composition sensors 384</p> <p>19.6 Freshness or spoilage indicators 384</p> <p>19.7 Biosensors and nanosensors 385</p> <p>19.7.1 Metallic nanoparticles 386</p> <p>19.7.2 Quantum dots 387</p> <p>19.7.3 DNA-based nanosensors 388</p> <p>19.7.4 Conducting polymers 389</p> <p>19.8 Conclusion and future outlook 389</p> <p>References 390</p> <p><b>20 Consumer Perception of Safety and Quality of Food Products Maintained under Cold Storage 395</b><br /> <i>Jasmin Geppert and Rainer Stamminger</i></p> <p>20.1 Introduction 395</p> <p>20.2 The role of refrigeration in food quality and safety 396</p> <p>20.2.1 Food spoilage processes 396</p> <p>20.2.2 Microbial spoilage 396</p> <p>20.2.3 (Bio-) chemical spoilage 397</p> <p>20.2.4 Physical spoilage 398</p> <p>20.3 Effects of temperature on food spoilage and quality 398</p> <p>20.3.1 Temperature dependency of chemical spoilage processes 398</p> <p>20.3.2 Temperature dependency of enzymatic spoilage processes 398</p> <p>20.3.3 Temperature dependency of microbial spoilage processes 399</p> <p>20.4 Quality and safety of frozen foods 400</p> <p>20.4.1 Freezing process 400</p> <p>20.4.2 Frozen storage 400</p> <p>20.5 Cold storage technologies 401</p> <p>20.5.1 Principles of refrigeration 401</p> <p>20.5.2 Refrigerator layout and temperature zones 402</p> <p>20.5.3 Energy label and its influence on cooling performance 403</p> <p>20.6 Consumers’ handling of chilled food and home practices 404</p> <p>20.6.1 Factors affecting consumer behaviour in handling chilled foods 405</p> <p>20.6.2 Food shopping habits 405</p> <p>20.6.3 Food handling at home 406</p> <p>20.6.4 Temperatures in domestic refrigeration 407</p> <p>20.7 Conclusions and future outlook 409</p> <p>References 410</p> <p><b>21 Foodborne Infections and Intoxications Associated with International Travel 415</b><br /> <i>Martin Alberer and Thomas Löscher</i></p> <p>21.1 Introduction 415</p> <p>21.2 Travelers’ diarrhea 416</p> <p>21.3 Etiology of foodborne infections 418</p> <p>21.3.1 Escherichia coli (E. coli) 419</p> <p>21.3.2 Enterotoxigenic E. coli (ETEC) 419</p> <p>21.3.3 Enteroaggregative E. coli (EAEC) 420</p> <p>21.3.4 Enterohemorrhagic E. coli 421</p> <p>21.3.5 Enteropathogenic E. coli 422</p> <p>21.3.6 Enteroinvasive E. coli 422</p> <p>21.3.7 Diffusely adherent E. coli 423</p> <p>21.3.8 Infection by Campylobacter spp. 423</p> <p>21.3.9 Shigellosis 424</p> <p>21.3.10 Salmonellosis 424</p> <p>21.3.11 Infection by Aeromonas spp. 425</p> <p>21.3.12 Infection by Plesiomonas spp. 425</p> <p>21.3.13 Infection by Vibrio cholerae and Non-cholera Vibrios 425</p> <p>21.3.14 Infection by Yersinia enterocolitica 426</p> <p>21.3.15 Infection by Arcobacter spp. 427</p> <p>21.3.16 Viruses as causative agents in the development of TD 427</p> <p>21.3.17 Protozoan organisms as cause of TD 428</p> <p>21.3.18 Giardiasis 428</p> <p>21.3.19 Cryptosporidiosis 428</p> <p>21.3.20 Cyclosporiasis 429</p> <p>21.3.21 Amebiasis 429</p> <p>21.3.22 Other intestinal parasites as a cause for foodborne infection 430</p> <p>21.4 Clinical symptoms/signs and diagnosis of TD 430</p> <p>21.5 Therapy of TD 431</p> <p>21.6 Prevention and Prophylaxis of TD 432</p> <p>21.7 Foodborne intoxications 433</p> <p>21.7.1 Staphylococcal enterotoxin intoxication 433</p> <p>21.7.2 Bacillus cereus food intoxication 434</p> <p>21.7.3 Clostridium perfringens food intoxication 434</p> <p>21.7.4 Clostridium botulinum intoxication 434</p> <p>21.7.5 Ciguatera 435</p> <p>21.7.6 Tetrodotoxin poisoning 435</p> <p>21.7.7 Paralytic shellfish poisoning 436</p> <p>21.7.8 Neurotoxic shellfish poisoning 436</p> <p>21.7.9 Amnesic shellfish poisoning 437</p> <p>21.7.10 Scombroid 437</p> <p>21.8 Conclusion 437</p> <p>References 438</p> <p><b>22 Electron Beam Inactivation of Foodborne Pathogens with an Emphasis on Salmonella 451</b><br /> <i>Reza Tahergorabi, Jacek Jaczynski, and Kristen E. Matak</i></p> <p>22.1 Introduction 452</p> <p>22.2 Food irradiation 453</p> <p>22.3 Inactivation of Salmonella with e-beam and ionizing radiation 455</p> <p>22.3.1 Application of electron beam 455</p> <p>22.3.2 Comparison of e-beam, gamma radiation, and x-ray 456</p> <p>22.3.3 Mechanism of microbial inactivation 456</p> <p>22.4 Microbial inactivation kinetics and process calculations 459</p> <p>22.5 Microbial radio-resistance 460</p> <p>22.6 Foodborne Salmonella outbreaks and Salmonella reservoirs 460</p> <p>22.6.1 Examples of e-beam applications to inactivate Salmonella in food 462</p> <p>22.7 US regulatory status of e-beam 462</p> <p>22.8 Future direction of Salmonella inactivation using e-beam 464</p> <p>22.9 Conclusions 465</p> <p>References 466</p> <p><b>23 Inactivation of Foodborne Viruses: Recent Findings Applicable to Food-Processing Technologies 471</b><br /> <i>Allison Vimont, Ismaïl Fliss, and Julie Jean</i></p> <p>23.1 Introduction 472</p> <p>23.2 Physical treatments 473</p> <p>23.2.1 Low-temperature-based methods 473</p> <p>23.2.2 High-temperature-based methods 474</p> <p>23.2.3 UV light treatments 475</p> <p>23.2.4 Pulsed light treatments 477</p> <p>23.2.5 Irradiation treatments 478</p> <p>23.2.6 High-pressure treatments 479</p> <p>23.2.7 Other physical treatments 480</p> <p>23.3 Chemical treatments 481</p> <p>23.3.1 Washing 481</p> <p>23.3.2 Hypochlorous acid 481</p> <p>23.3.3 Chlorine dioxide 483</p> <p>23.3.4 Ozone 483</p> <p>23.3.5 Peroxyacids 484</p> <p>23.3.6 Other chemical agents 485</p> <p>23.4 Conclusions and future outlook 486</p> <p>References 486</p> <p><b>24 Use of Synbiotics (Probiotics and Prebiotics) to Improve the Safety of Foods 497</b><br /> <i>Jean Guy LeBlanc, Alejandra de Moreno de LeBlanc, Ricardo Pinheiro de Souza Oliveira, and Svetoslav Dimitrov Todorov</i></p> <p>24.1 Introduction 498</p> <p>24.2 Probiotics 499</p> <p>24.3 Prebiotics and synbiotics 501</p> <p>24.4 Production of bacteriocins by probiotic LAB 502</p> <p>24.4.1 Production of antibacterial substances by LAB 502</p> <p>24.4.2 Production of bacteriocins by LAB 503</p> <p>24.4.3 Production of bacteriocins by LAB present in fermented cereals 504</p> <p>24.4.4 Production of bacteriocins by LAB present in other fermented foods 505</p> <p>24.4.5 Effect of commercial drugs on bacteriocin production by LAB 506</p> <p>24.4.6 Antibiotic resistance in bacteriocins producing LAB 507</p> <p>Acknowledgements 510</p> <p>References 511</p> <p><b>25 Predictive Microbiology: A Valuable Tool in Food Safety and Microbiological Risk Assessments 517</b><br /> <i>F.N. Arroyo-López, J. Bautista Gallego, A. Valero, R.M. García-Gimeno, and A. Garrido Fernández</i></p> <p>25.1 Introduction 518</p> <p>25.2 Predictive microbiology 519</p> <p>25.2.1 History and definition 519</p> <p>25.2.2 Steps to follow in the correct implementation of a predictive model 520</p> <p>25.2.3 Choice of the medium for model development 521</p> <p>25.2.4 Experimental design 521</p> <p>25.2.5 Data collection 521</p> <p>25.2.6 Primary modelling 522</p> <p>25.2.7 Secondary modelling 522</p> <p>25.2.8 Square root models 524</p> <p>25.2.9 Cardinal parameters models 524</p> <p>25.2.10 Polynomial models 525</p> <p>25.2.11 Probabilistic models 525</p> <p>25.2.12 Neural network (NN) models 525</p> <p>25.2.13 Dose response models 526</p> <p>25.2.14 Dynamic models 526</p> <p>25.2.15 Model validation 526</p> <p>25.3 Microbiological risk assessment 527</p> <p>25.4 Software packages and web applications 529</p> <p>25.5 Applications and future implications 530</p> <p>Acknowledgements 531</p> <p>References 531</p> <p><b>26 Pests in Poultry, Poultry Product-Borne Infection and Future Precautions 535</b><br /> <i>Hongshun Yang, Shuvra K. Dey, Robert Buchanan, and Debabrata Biswas</i></p> <p>26.1 Introduction 536</p> <p>26.2 The potential risk of contamination in poultry 537</p> <p>26.2.1 Conventional poultry 537</p> <p>26.2.2 Pasture poultry 538</p> <p>26.3 Major sources of pests in poultry 539</p> <p>26.3.1 Premise pests 540</p> <p>26.3.2 Ectoparasites 541</p> <p>26.4 Important poultry-related diseases associated with pests 542</p> <p>26.4.1 Salmonella and Campylobacter 542</p> <p>26.4.2 Coccidiosis of poultry associated with pest 544</p> <p>26.5 Current practices of pest control in poultry 545</p> <p>26.5.1 Housing type and management 545</p> <p>26.5.2 Waste management 545</p> <p>26.5.3 Flock management 545</p> <p>26.6 Promising pest control strategies 546</p> <p>26.7 Conclusion and future outlook 547</p> <p>References 548</p> <p><b>27 Safety of Meat and Meat Products in the Twenty-first Century 553</b><br /> <i>Ian Jenson, Paul Vanderlinde, John Langbridge, and John Sumner</i></p> <p>27.1 Introduction 553</p> <p>27.2 Where did we start? 554</p> <p>27.3 Associated risk and public health 555</p> <p>27.4 Meat safety: fresh (chilled and frozen) red meat 556</p> <p>27.4.1 Hazards associated with fresh meat 557</p> <p>27.4.2 Hygienic processing of meat 559</p> <p>27.4.3 Risk assessment 560</p> <p>27.4.4 Risk management 561</p> <p>27.4.5 Performance 563</p> <p>27.5 Meat safety: cooked and ready-to-eat meats 564</p> <p>27.5.1 Hazards associated with RTE meats 564</p> <p>27.5.2 Processing of RTE meats 565</p> <p>27.5.3 Risk assessment 566</p> <p>27.5.4 Risk management 566</p> <p>27.6 Meat safety: fermented meats 567</p> <p>27.6.1 Hazards 568</p> <p>27.6.2 Processing of fermented meats 569</p> <p>27.6.3 Risk associated with fermented meats 570</p> <p>27.6.4 Microbiological criteria 570</p> <p>27.7 Current status of meat safety and future outlook 570</p> <p>References 571</p> <p><b>28 Application of Hazard Analysis and Critical Control Point Principles for Ochratoxin-A Prevention in Coffee Production Chain 577</b><br /> <i>Kulandaivelu Velmourougane, T.N.Gopinandhan, and Rajeev Bhat</i></p> <p>28.1 Introduction 578</p> <p>28.2 Coffee quality and food safety 578</p> <p>28.3 Mycotoxins 578</p> <p>28.4 Coffee production and OTA contamination 580</p> <p>28.4.1 Harvesting 580</p> <p>28.4.2 Sorting 580</p> <p>28.4.3 Pulping and fermentation 580</p> <p>28.4.4 Drying 583</p> <p>28.4.5 Moisture management 584</p> <p>28.4.6 On-farm storage 585</p> <p>28.5 Coffee waste management and OTA contamination 587</p> <p>28.6 Curing factories as a source of OTA contamination 587</p> <p>28.6.1 Dust control in curing factories 587</p> <p>28.6.2 Defective beans and OTA contamination 587</p> <p>28.6.3 Shipment 588</p> <p>28.7 Application of GAP/GMP and HACCP principles 588</p> <p>28.7.1 HACCP, food hygiene and food safety 588</p> <p>28.7.2 Code of good practices for OTA prevention in coffee production 589</p> <p>28.8 Conclusions and future outlook 592</p> <p>Acknowledgements 592</p> <p>References 592</p> <p>Index 597</p>
<p><b>Dr Rajeev Bhat</b> is Associate Professor in the Department of Food Technology at the School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.</p> <p><b>Dr Vicente M. Gómez-López</b> is a senior researcher in the Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Espinardo, Spain.</p>
<p>The past few years have witnessed an upsurge in incidences relating to food safety issues, which are all attributed to different factors. Today, with the increase in knowledge and available databases on food safety issues, the world is witnessing tremendous efforts towards the development of new, economical and environmentally-friendly techniques for maintaining the quality of perishable foods and agro-based commodities. The intensification of food safety concerns reflects a major global awareness of foods in world trade. Several recommendations have been put forward by various world governing bodies and committees to solve food safety issues, which are all mainly targeted at benefiting consumers. In addition, economic losses and instability to a particular nation or region caused by food safety issues can be huge. Various ‘non-dependent’ risk factors can be involved with regard to food safety in a wide range of food commodities such as fresh fruits, vegetables, seafood, poultry, meat and meat products. Additionally, food safety issues involves a wide array of issues  including processed foods, packaging, post-harvest preservation, microbial growth and spoilage, food poisoning, handling at the manufacturing units, food additives, presence of banned chemicals and drugs, and more. Rapid change in climatic conditions is also playing a pivotal role with regard to food safety issues, and increasing the anxiety about our ability to feed the world safely.</p> <p><i>Practical Food Safety: Contemporary Issues and Future Directions</i> takes a multi-faceted approach to the subject of food safety, covering various aspects ranging from microbiological to chemical issues, and from basic knowledge to future perspectives. This is a book exclusively designed to simultaneously encourage consideration of the present knowledge and future possibilities of food safety. This book also covers the classic topics required for all books on food safety, and encompasses the most recent updates in the field. Leading researchers have addressed new issues and have put forth novel research findings that will affect the world in the future, and suggesting how these should be faced.</p> <p>This book will be useful for researchers engaged in the field of food science and food safety, food industry personnel engaged in safety aspects, and governmental and non-governmental agencies involved in establishing guidelines towards establishing safety measures for food and agricultural commodities.</p>

Diese Produkte könnten Sie auch interessieren:

Agricultural Biodiversity and Biotechnology in Economic Development
Agricultural Biodiversity and Biotechnology in Economic Development
von: Joseph Cooper, Leslie Lipper, David Zilberman
PDF ebook
213,99 €
Policy Reforms and Agriculture Development in Central Asia
Policy Reforms and Agriculture Development in Central Asia
von: Sandjar Djalalov, Suresh Chandra Babu
PDF ebook
213,99 €
Regulating Agricultural Biotechnology
Regulating Agricultural Biotechnology
von: Richard E. Just, Julian M. Alston, David Zilberman
PDF ebook
213,99 €