Details

Sustainable Engineering


Sustainable Engineering

Drivers, Metrics, Tools, and Applications
1. Aufl.

von: Krishna R. Reddy, Claudio Cameselle, Jeffrey A. Adams

112,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 22.04.2019
ISBN/EAN: 9781119493945
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Comprehensively covers the definition, methodology, and current applications of the principles of sustainability and resiliency in every engineering discipline</b></p> <p>This book contains detailed information about sustainability and resiliency principles and applications in engineering practice, and provides information on how to use scientific tools for sustainability assessment that help engineers select the best alternative for each project or activity. Logically organized around the three pillars of sustainability—environment, economy, and society—it is a primary resource for students and professionals alike.</p> <p><i>Sustainable Engineering: Drivers, Metrics, Tools, and Applications</i> offers numerous ways to help engineers contribute towards global sustainable development while solving some of the grand challenges the world is facing today. The first part of the book covers the environmental, economic, and social impacts associated with project/product development as well as society as a whole. This is followed by a section devoted to sustainability metrics and assessment tools, which includes material flow analysis and material budget, carbon footprint analysis, life cycle assessment, environmental health risk assessment, and more. Next comes an in-depth examination of sustainable engineering practices, including sustainable energy engineering, sustainable waste management, and green and sustainable buildings. The book concludes with a look at how sustainable engineering may be applied to different engineering (i.e. environmental, chemical, civil, materials, infrastructure) projects.</p> <p>Some of the key features of this book include the following: </p> <ul> <li>Provides a complete and sensible understanding of the important concepts of sustainability, resiliency, and sustainable engineering</li> <li>Offers detailed explanations of sustainable engineering practices in waste management and remediation of contaminated sites, civil construction and infrastructure, and climate geoengineering</li> <li>Presents a set of case studies across different engineering disciplines such as bio/chemical, environmental, materials, construction, and infrastructure engineering that demonstrate the practical applicability of sustainability assessment tools to diverse projects</li> <li>Includes questions at the end of each chapter as well as a solutions manual for academic adopters </li> </ul> <p>The depth of coverage found in <i>Sustainable Engineering: Drivers, Metrics, Tools, and Applications</i> makes it an ideal textbook for graduate students across all engineering disciplines and a handy resource for active professionals.</p>
<p>Preface xvii</p> <p><b>Section I Drivers, Environmental, Economic and Social Impacts, and Resiliency </b><b>1</b></p> <p><b>1 Emerging Challenges, Sustainability, and Sustainable Engineering </b><b>3</b></p> <p>1.1 Introduction 3</p> <p>1.2 Emerging Challenges 3</p> <p>1.2.1 Increased Consumption and Depletion of Natural Resources 3</p> <p>1.2.2 Growing Environmental Pollution 6</p> <p>1.2.3 Increasing Population 7</p> <p>1.2.4 Increasing Waste Generation 8</p> <p>1.2.5 Increasing Greenhouse Gas Emissions 10</p> <p>1.2.6 Decline of Ecosystems 13</p> <p>1.2.7 Loss of Biodiversity 13</p> <p>1.2.8 Social Injustice 14</p> <p>1.2.9 Urban Sprawl 16</p> <p>1.3 The Master Equation or IPAT Equation 17</p> <p>1.4 What Is Sustainability? 17</p> <p>1.5 What Is Sustainable Engineering? 21</p> <p>1.6 Summary 25</p> <p>1.7 Questions 26</p> <p>References 26</p> <p><b>2 Environmental Concerns </b><b>31</b></p> <p>2.1 Introduction 31</p> <p>2.2 Global Warming and Climate Change 32</p> <p>2.3 Desertification 40</p> <p>2.4 Deforestation 40</p> <p>2.5 Loss of Habitat and Biodiversity 41</p> <p>2.6 Ozone Layer Depletion 43</p> <p>2.7 Air Pollution 44</p> <p>2.8 Smog 46</p> <p>2.9 Acid Rain 47</p> <p>2.10 Water Usage and Pollution 48</p> <p>2.11 Eutrophication 51</p> <p>2.12 Salinity 52</p> <p>2.13 Wastes and Disposal 52</p> <p>2.14 Land Contamination 59</p> <p>2.15 Visibility 60</p> <p>2.16 Odors 60</p> <p>2.17 Aesthetic Degradation 61</p> <p>2.18 Land Use Patterns 61</p> <p>2.19 Thermal Pollution 61</p> <p>2.20 Noise Pollution 62</p> <p>2.21 Summary 62</p> <p>2.22 Questions 63</p> <p>References 64</p> <p><b>3 Social, Economic, and Legal Issues </b><b>69</b></p> <p>3.1 Introduction 69</p> <p>3.2 Social Issues 69</p> <p>3.2.1 Society 69</p> <p>3.2.2 Developed and Developing Societies 70</p> <p>3.2.3 Social Sustainability Concept 71</p> <p>3.2.4 Social Indicators 72</p> <p>3.2.5 Social Impact Assessment 73</p> <p>3.2.6 Social Sustainability Implementation 77</p> <p>3.3 Economic Issues 77</p> <p>3.3.1 Economic Assessment Framework 78</p> <p>3.3.2 Life Cycle Costing 79</p> <p>3.3.3 True-cost Accounting 79</p> <p>3.4 Legal Issues 80</p> <p>3.5 Summary 81</p> <p>3.6 Questions 81</p> <p>References 82</p> <p><b>4 Availability and Depletion of Natural Resources </b><b>85</b></p> <p>4.1 Introduction 85</p> <p>4.2 Types and Availability of Resources 85</p> <p>4.2.1 Fossil Fuels 85</p> <p>4.2.2 Radioactive Fuels 87</p> <p>4.2.3 Mineral Resources 88</p> <p>4.2.4 Water Resources 89</p> <p>4.2.5 Other Elemental Cycles 91</p> <p>4.3 Resource Depletion 94</p> <p>4.3.1 Causes of Resource Depletion 95</p> <p>4.3.2 Effects of Resource Depletion 95</p> <p>4.3.3 Overshooting 98</p> <p>4.3.4 Urban Metabolism 98</p> <p>4.4 Summary 99</p> <p>4.5 Questions 100</p> <p>References 101</p> <p><b>5 Disaster Resiliency </b><b>103</b></p> <p>5.1 Introduction 103</p> <p>5.2 Climate Change and Extreme Events 104</p> <p>5.3 Impacts of Extreme Events 105</p> <p>5.3.1 The 2012 Hurricane Sandy in New York City 105</p> <p>5.3.2 The 2016 Chile’s Wildfires by Drought and Record Heat 106</p> <p>5.3.3 The 2017Worst South Asian Monsoon Floods 106</p> <p>5.4 What Is Resiliency? 106</p> <p>5.5 Initiatives and Policies on Resiliency 109</p> <p>5.6 Resiliency Framework 112</p> <p>5.7 Resilient Infrastructure 115</p> <p>5.8 Resilient Infrastructure Examples 117</p> <p>5.8.1 San Francisco Firehouse Resilient Design 117</p> <p>5.8.2 San Francisco Resilient CSD Design 117</p> <p>5.8.3 Resilient Environmental Remediation 119</p> <p>5.9 Challenges 126</p> <p>5.10 Summary 126</p> <p>5.11 Questions 127</p> <p>References 127</p> <p><b>Section II Sustainability Metrics and Assessment Tools </b><b>131</b></p> <p><b>6 Sustainability Indicators, Metrics, and Assessment Tools </b><b>133</b></p> <p>6.1 Introduction 133</p> <p>6.2 Sustainability Indicators 133</p> <p>6.3 Sustainability Metrics 136</p> <p>6.4 Sustainability Assessment Tools 137</p> <p>6.5 Summary 139</p> <p>6.6 Questions 139</p> <p>References 140</p> <p><b>7 Material Flow Analysis and Material Budget </b><b>143</b></p> <p>7.1 Introduction 143</p> <p>7.2 Budget of Natural Resources 143</p> <p>7.3 Constructing a Budget 145</p> <p>7.4 Material Flow Analysis 145</p> <p>7.5 Material Flow Analysis: Wastes 148</p> <p>7.6 National Material Account 151</p> <p>7.7 Summary 155</p> <p>7.8 Questions 156</p> <p>References 156</p> <p><b>8 Carbon Footprint Analysis </b><b>159</b></p> <p>8.1 Introduction 159</p> <p>8.2 Global Warming Potential and Carbon Footprint 159</p> <p>8.3 Measuring Carbon Footprint 161</p> <p>8.3.1 Define the Scope of Your Inventory 161</p> <p>8.3.2 Measure Emissions and Establish a Baseline 161</p> <p>8.3.3 Develop Targets and Strategies to Reduce Emissions 164</p> <p>8.3.4 Off-set Unavoidable Emissions 164</p> <p>8.3.5 Independent Verification 164</p> <p>8.4 Standards for Calculating the Carbon Footprint 164</p> <p>8.5 GHG Inventory: Developments in the United States 165</p> <p>8.6 USEPA: Greenhouse Gas Reporting Program 166</p> <p>8.7 Tools for GHG Inventory 166</p> <p>8.8 UIC Carbon Footprint Case Study 167</p> <p>8.9 Programs to Mitigate GHG Emissions 171</p> <p>8.10 Summary 172</p> <p>8.11 Questions 172</p> <p>References 172</p> <p><b>9 Life Cycle Assessment </b><b>175</b></p> <p>9.1 Introduction 175</p> <p>9.2 Life Cycle Assessment 176</p> <p>9.2.1 Definition and Objective 176</p> <p>9.2.2 Procedure 176</p> <p>9.2.3 History 178</p> <p>9.3 LCA Methodology 179</p> <p>9.3.1 Goal and Scope Definition 180</p> <p>9.3.2 Life Cycle Inventory (LCI) 181</p> <p>9.3.3 Life Cycle Impact Assessment (LCIA) 184</p> <p>9.3.4 Interpretation 188</p> <p>9.4 LCA Tools and Applications 189</p> <p>9.5 Summary 190</p> <p>9.6 Questions 191</p> <p>References 191</p> <p><b>10 Streamlined Life Cycle Assessment </b><b>193</b></p> <p>10.1 Introduction 193</p> <p>10.2 Streamlined LCA (SLCA) 194</p> <p>10.3 Expanded SLCA 197</p> <p>10.4 Simple Example of SLCA 200</p> <p>10.5 Applications of SLCA 202</p> <p>10.6 Summary 206</p> <p>10.7 Questions 206</p> <p>References 207</p> <p><b>11 Economic Input–Output Life Cycle Assessment </b><b>209</b></p> <p>11.1 Introduction 209</p> <p>11.2 EIO Model 209</p> <p>11.3 EIO-LCA 211</p> <p>11.4 EIO-LCA Model Results 213</p> <p>11.4.1 Interpretation of Results 213</p> <p>11.4.2 Uncertainty 213</p> <p>11.4.3 Other Issues and Considerations 214</p> <p>11.5 Example of EIO-LCA Model 214</p> <p>11.6 Conventional LCA versus EIO-LCA 216</p> <p>11.7 EIO versus Physical Input–Output (PIO) Analysis 218</p> <p>11.8 Summary 221</p> <p>11.9 Questions 221</p> <p>References 222</p> <p><b>12 Environmental Health Risk Assessment </b><b>223</b></p> <p>12.1 Introduction 223</p> <p>12.2 Emergence of the Risk Era 223</p> <p>12.3 Risk Assessment and Management 224</p> <p>12.3.1 Hazard Identification 225</p> <p>12.3.2 Dose–Response Assessment 225</p> <p>12.3.3 Exposure Assessment 227</p> <p>12.3.4 Risk Characterization 228</p> <p>12.4 Ecological Risk Assessment 230</p> <p>12.5 Summary 231</p> <p>12.6 Questions 232</p> <p>References 232</p> <p><b>13 Other Emerging Assessment Tools </b><b>233</b></p> <p>13.1 Introduction 233</p> <p>13.2 Environmental Assessment Tools/Indicators 233</p> <p>13.3 Economic Assessment Tools 235</p> <p>13.3.1 Life-Cycle Costing 236</p> <p>13.3.2 Cost–Benefit Analysis 237</p> <p>13.4 Ecosystem Services Valuation Tools 237</p> <p>13.5 Environmental Justice Tools 238</p> <p>13.6 Integrated Sustainability Assessment Tools 239</p> <p>13.7 Summary 241</p> <p>13.8 Questions 241</p> <p>References 242</p> <p><b>Section III Sustainable Engineering Practices </b><b>243</b></p> <p><b>14 Sustainable Energy Engineering </b><b>245</b></p> <p>14.1 Introduction 245</p> <p>14.2 Environmental Impacts of Energy Generation 246</p> <p>14.2.1 Air Emissions 246</p> <p>14.2.2 Solid Waste Generation 250</p> <p>14.2.3 Water Resource Use 250</p> <p>14.2.4 Land Resource Use 250</p> <p>14.3 Nuclear Energy 251</p> <p>14.4 Strategies for Clean Energy 252</p> <p>14.5 Renewable Energy 254</p> <p>14.5.1 Solar Energy 254</p> <p>14.5.2 Wind Energy 255</p> <p>14.5.3 Water Energy 257</p> <p>14.5.4 Geothermal Energy 259</p> <p>14.5.5 Biomass Energy 262</p> <p>14.6 Summary 265</p> <p>14.7 Questions 266</p> <p>References 266</p> <p><b>15 Sustainable Waste Management </b><b>269</b></p> <p>15.1 Introduction 269</p> <p>15.2 Types of Waste 269</p> <p>15.2.1 Nonhazardous Waste 270</p> <p>15.2.2 Hazardous Waste 270</p> <p>15.3 Effects and Impacts of Waste 270</p> <p>15.4 Waste Management 271</p> <p>15.4.1 Pollution Prevention 272</p> <p>15.4.2 Green Chemistry 272</p> <p>15.4.3 Waste Minimization 274</p> <p>15.4.4 Reuse/Recycling 274</p> <p>15.4.5 Energy Recovery 276</p> <p>15.4.6 Landfilling 276</p> <p>15.5 Integrated Waste Management 278</p> <p>15.6 Sustainable Waste Management 281</p> <p>15.7 Circular Economy 282</p> <p>15.8 Summary 283</p> <p>15.9 Questions 283</p> <p>References 284</p> <p><b>16 Green and Sustainable Buildings </b><b>287</b></p> <p>16.1 Introduction 287</p> <p>16.2 Green Building History 288</p> <p>16.3 Why Build Green? 288</p> <p>16.4 Green Building Concepts 289</p> <p>16.5 Components of Green Building 290</p> <p>16.6 Green Building Rating – LEED 293</p> <p>16.7 Summary 297</p> <p>16.8 Questions 297</p> <p>References 298</p> <p><b>17 Sustainable Civil Infrastructure </b><b>299</b></p> <p>17.1 Introduction 299</p> <p>17.2 Principles of Sustainable Infrastructure 300</p> <p>17.3 Civil Infrastructure 300</p> <p>17.4 Envision<sup>TM</sup>: Sustainability Rating of Civil Infrastructure 302</p> <p>17.5 Sustainable Infrastructure Practices: Example of Water Infrastructure 305</p> <p>17.5.1 Green Roofs 306</p> <p>17.5.2 Permeable Pavements 306</p> <p>17.5.3 Rainwater Harvesting 307</p> <p>17.5.4 Rain Gardens and Planter Boxes 309</p> <p>17.5.5 Bioswales 309</p> <p>17.5.6 Constructed Wetlands and Tree Canopies 309</p> <p>17.6 Summary 313</p> <p>17.7 Questions 313</p> <p>References 314</p> <p><b>18 Sustainable Remediation of Contaminated Sites </b><b>315</b></p> <p>18.1 Introduction 315</p> <p>18.2 Contaminated Site Remediation Approach 317</p> <p>18.3 Green and Sustainable Remediation Technologies 318</p> <p>18.4 Sustainable Remediation Framework 323</p> <p>18.5 Sustainable Remediation Indicators, Metrics, and Tools 326</p> <p>18.6 Case Studies 328</p> <p>18.7 Challenges and Opportunities 329</p> <p>18.8 Summary 330</p> <p>18.9 Questions 331</p> <p>References 332</p> <p><b>19 Climate Geoengineering </b><b>333</b></p> <p>19.1 Introduction 333</p> <p>19.2 Climate Geoengineering 336</p> <p>19.3 Carbon Dioxide Removal (CDR) Methods 336</p> <p>19.3.1 Subsurface Sequestration 336</p> <p>19.3.2 Surface Sequestration 338</p> <p>19.3.3 Marine Organism Sequestration 338</p> <p>19.3.4 Direct Engineered Capture 339</p> <p>19.4 Solar Radiation Management (SRM) Methods 340</p> <p>19.4.1 Sulfur Injection 342</p> <p>19.4.2 Reflectors and Mirrors 343</p> <p>19.5 Applicability of CDR and SRM 344</p> <p>19.6 Climate Geoengineering – A Theoretical Framework 345</p> <p>19.7 Risks and Challenges 345</p> <p>19.8 Summary 347</p> <p>19.9 Questions 348</p> <p>References 348</p> <p><b>Section IV Sustainable Engineering Applications </b><b>351</b></p> <p><b>20 Environmental and Chemical Engineering Projects </b><b>353</b></p> <p>20.1 Introduction 353</p> <p>20.2 Food Scrap Landfilling Versus Composting 353</p> <p>20.2.1 Background 353</p> <p>20.2.2 Methodology 355</p> <p>20.2.3 Environmental Sustainability 358</p> <p>20.2.4 Life Cycle Assessment 359</p> <p>20.2.5 Economic Sustainability 359</p> <p>20.2.6 Social Sustainability 365</p> <p>20.2.7 ENVISION<sup>TM</sup> 365</p> <p>20.2.8 Conclusions 368</p> <p>20.3 Adsorbent for the Removal of Arsenic from Groundwater 368</p> <p>20.3.1 Background 368</p> <p>20.3.2 Methodology 369</p> <p>20.3.3 Environmental Sustainability 372</p> <p>20.3.4 Economic Sustainability 373</p> <p>20.3.5 Social Sustainability 375</p> <p>20.3.6 Streamline Life Cycle Assessment (SLCA) 375</p> <p>20.3.7 Envision 378</p> <p>20.3.8 Conclusions 380</p> <p>20.4 Conventional Versus Biocover Landfill Cover System 381</p> <p>20.4.1 Background 382</p> <p>20.4.2 Methodology 383</p> <p>20.4.3 Environmental Sustainability 386</p> <p>20.4.4 Economic Sustainability 391</p> <p>20.4.5 Social Sustainability 393</p> <p>20.4.6 Conclusions 394</p> <p>20.5 Algae Biomass Deep Well Reactors Versus Open Pond Systems 394</p> <p>20.5.1 Background 394</p> <p>20.5.2 Methodology 396</p> <p>20.5.3 Environmental Sustainability 400</p> <p>20.5.4 Economic Sustainability 402</p> <p>20.5.5 Social Sustainability 402</p> <p>20.5.6 Conclusions 405</p> <p>20.6 Remedial Alternatives for PCB- and Pesticide-Contaminated Sediment 405</p> <p>20.6.1 Background 405</p> <p>20.6.2 Methodology 406</p> <p>20.6.3 Environmental Sustainability 410</p> <p>20.6.4 Economic Sustainability 411</p> <p>20.6.5 Social Sustainability 412</p> <p>20.6.6 Overall Sustainability 414</p> <p>20.6.7 Conclusions 416</p> <p>20.7 Summary 416</p> <p>References 417</p> <p><b>21 Civil and Materials Engineering Sustainability Projects </b><b>419</b></p> <p>21.1 Introduction 419</p> <p>21.2 Sustainable Translucent Composite Panels 419</p> <p>21.2.1 Background 419</p> <p>21.2.2 Methodology 420</p> <p>21.2.3 Environmental Sustainability 423</p> <p>21.2.4 Economic Sustainability 423</p> <p>21.2.5 Social Sustainability 427</p> <p>21.2.6 Conclusions 430</p> <p>21.3 Sustainability Assessment of Concrete Mixtures for Pavements and Bridge Decks 430</p> <p>21.3.1 Background 430</p> <p>21.3.2 Methodology 432</p> <p>21.3.3 Environmental Sustainability 439</p> <p>21.3.4 Economic Sustainability 445</p> <p>21.3.5 Social Sustainability 447</p> <p>21.3.6 Conclusions 448</p> <p>21.4 Sustainability Assessment of Parking Lot Design Alternatives 449</p> <p>21.4.1 Background 449</p> <p>21.4.2 Methodology 450</p> <p>21.4.3 Environmental Sustainability 452</p> <p>21.4.4 Economic Sustainability 455</p> <p>21.4.5 Social Sustainability 456</p> <p>21.4.6 Overall Sustainability 457</p> <p>21.4.7 Conclusions 457</p> <p>21.5 Summary 458</p> <p>References 458</p> <p><b>22 Infrastructure Engineering Sustainability Projects </b><b>461</b></p> <p>22.1 Introduction 461</p> <p>22.2 Comparison of Two Building Designs for an Electric Bus Substation 461</p> <p>22.2.1 Background 461</p> <p>22.2.2 Methodology 462</p> <p>22.2.3 Environmental Sustainability 463</p> <p>22.2.4 Economic Sustainability 467</p> <p>22.2.5 Social Sustainability 469</p> <p>22.2.6 Conclusion 472</p> <p>22.3 Prefabricated Cantilever Retaining Wall versus Conventional Cantilever Cast-in Place Retaining Wall 472</p> <p>22.3.1 Background 473</p> <p>22.3.2 Methodology 473</p> <p>22.3.3 Environmental Sustainability 477</p> <p>22.3.4 Economic Sustainability 477</p> <p>22.3.5 Social Sustainability 478</p> <p>22.3.6 Conclusion 483</p> <p>22.4 Sustainability Assessment of Two Alternate Water Pipelines 483</p> <p>22.4.1 Background 483</p> <p>22.4.2 Methodology 484</p> <p>22.4.3 Environmental Sustainability 486</p> <p>22.4.4 Economic Sustainability 487</p> <p>22.4.5 Social Sustainability 488</p> <p>22.4.6 Conclusion 489</p> <p>22.5 Sustainable Rural Electrification 491</p> <p>22.5.1 Background 491</p> <p>22.5.2 Methodology 491</p> <p>22.5.3 Environmental Sustainability 493</p> <p>22.5.4 Economic Sustainability 493</p> <p>22.5.5 Social Sustainability 497</p> <p>22.5.6 Conclusion 498</p> <p>22.6 Sustainability Assessment of Shear Wall Retrofitting Techniques 499</p> <p>22.6.1 Background 499</p> <p>22.6.2 Methodology 500</p> <p>22.6.3 Environmental Sustainability 503</p> <p>22.6.4 Economic Sustainability 505</p> <p>22.6.5 Social Sustainability 507</p> <p>22.6.6 Overall Sustainability 507</p> <p>22.6.7 Conclusion 508</p> <p>22.7 Summary 510</p> <p>References 510</p> <p>Index 513</p>
<p><b>KRISHNA R. REDDY, P<small>H</small>D,</b> is a Professor of Civil and Environmental Engineering in the Department of Civil and Materials Engineering at the University of Illinois at Chicago, and the Director of the Sustainable Engineering Research Laboratory and the Geotechnical and Geoenvironmental Engineering Laboratory.</p> <p><b>CLAUDIO CAMESELLE, P<small>H</small>D,</b> is an Associate Professor at the University of Vigo (Spain) where he coordinates the master programs in industrial pollution and environmental mangement.</p> <p><b>JEFFREY A. ADAMS, P<small>H</small>D,</b> is a Principal with San Ramon, California-based ENGEO Incorporated. He is a licensed Professional Engineer in the State of California and a Certified Environmental Manager in the State of Nevada.</p>
<p><b>Comprehensively covers the definition, methodology, and current applications of the principles of sustainability and resiliency in every engineering discipline</b> <p>This book contains detailed information about sustainability and resiliency principles and applications in engineering practice, and provides information on how to use scientific tools for sustainability assessment that help engineers select the best alternative for each project or activity. Logically organized around the three pillars of sustainability—environment, economy, and society—it is a primary resource for students and professionals alike. <p><i>Sustainable Engineering: Drivers, Metrics, Tools, and Applications</i>??offers numerous ways to help engineers contribute towards global sustainable development while solving some of the grand challenges the world is facing today. The first part of the book covers the environmental, economic, and social impacts associated with project/product development as well as society as a whole. This is followed by a section devoted to sustainability metrics and assessment tools, which includes material flow analysis and material budget, carbon footprint analysis, life cycle assessment, environmental health risk assessment, and more. Next comes an in-depth examination of sustainable engineering practices, including sustainable energy engineering, sustainable waste management, and green and sustainable buildings. The book concludes with a look at how sustainable engineering may be applied to different engineering (i.e. environmental, chemical, civil, materials, infrastructure) projects. <p>Some of the key features of this book include the following: <ul> <li>Provides a complete and sensible understanding of the important concepts of sustainability, resiliency, and sustainable engineering</li> <li>Offers detailed explanations of sustainable engineering practices in waste management and remediation of contaminated sites, civil construction and infrastructure, and climate geoengineering</li> <li>Presents a set of case studies across different engineering disciplines such as bio/chemical, environmental, materials, construction, and infrastructure engineering that demonstrate the practical applicability of sustainability assessment tools to diverse projects</li> <li>Includes questions at the end of each chapter as well as a solutions manual for academic adopters</li> </ul> <p>The depth of coverage found in??<i>Sustainable Engineering: Drivers, Metrics, Tools, and Applications</i> makes it an ideal textbook for graduate students across all engineering disciplines and a handy resource for active professionals.

Diese Produkte könnten Sie auch interessieren:

Water Quality Hazards and Dispersion of Pollutants
Water Quality Hazards and Dispersion of Pollutants
von: Wlodzimierz Czernuszenko, Pawel Rowinski
PDF ebook
149,79 €
Energy and Environment
Energy and Environment
von: Richard Loulou, Jean-Philippe Waaub, Georges Zaccour
PDF ebook
96,29 €