Details

Total Chemical Synthesis of Proteins


Total Chemical Synthesis of Proteins


1. Aufl.

von: Ashraf Brik, Philip Dawson, Lei Liu

169,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 23.02.2021
ISBN/EAN: 9783527823574
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>How to synthesize native and modified proteins in the test tube</b></p> <p>With contributions from a panel of experts representing a range of disciplines, <i>Total Chemical Synthesis of Proteins</i> presents a carefully curated collection of synthetic approaches and strategies for the total synthesis of native and modified proteins.</p> <p>Comprehensive in scope, this important reference explores the three main chemoselective ligation methods for assembling unprotected peptide segments, including native chemical ligation (NCL). It includes information on synthetic strategies for the complex polypeptides that constitute glycoproteins, sulfoproteins, and membrane proteins, as well as their characterization. In addition, important areas of application for total protein synthesis are detailed, such as protein crystallography, protein engineering, and biomedical research. The authors also discuss the synthetic challenges that remain to be addressed. This unmatched resource:</p> <ul> <li>Contains valuable insights from the pioneers in the field of chemical protein synthesis</li> <li>Presents proven synthetic approaches for a range of protein families</li> <li>Explores key applications of precisely controlled protein synthesis, including novel diagnostics and therapeutics</li> </ul> <p>Written for organic chemists, biochemists, biotechnologists, and molecular biologists, <i>Total Chemical Synthesis of Proteins</i> provides key knowledge for everyone venturing into the burgeoning field of protein design and synthetic biology.</p>
<p>Preface xvii</p> <p><b>1 Characterization of Protein Molecules Prepared by Total Chemical Synthesis 1</b><br /><i>Stephen B. H. Kent</i></p> <p>1.1 Introduction 1</p> <p>1.2 Chemical Protein Synthesis 2</p> <p>1.3 Comments on Characterization of Synthetic Protein Molecules 8</p> <p>1.3.1 Homogeneity 8</p> <p>1.3.2 Amino Acid Sequence 9</p> <p>1.3.3 Chemical Analogues 10</p> <p>1.3.4 Limitations of SPPS 10</p> <p>1.3.5 Folding as a Purification Step 10</p> <p>1.4 Summary 12</p> <p>References 12</p> <p><b>2 Automated Fast Flow Peptide Synthesis 17</b><br /><i>Mark D. Simon, Alexander J. Mijalis, Kyle A. Totaro, Daniel Dunkelmann, Alexander A. Vinogradov, Chi Zhang, Yuta Maki, Justin M. Wolfe, Jessica Wilson, Andrei Loas, and Bradley L. Pentelute</i></p> <p>2.1 Introduction 17</p> <p>2.2 Results 19</p> <p>2.2.1 Summary 19</p> <p>2.2.1.1 Mechanical Principles 20</p> <p>2.2.1.2 Chemical Principles 20</p> <p>2.2.1.3 User Interface Principles 20</p> <p>2.2.1.4 Data Analysis Method 20</p> <p>2.2.1.5 Outcome 21</p> <p>2.2.2 First-generation Automated Fast Flow Peptide Synthesis 21</p> <p>2.2.2.1 Key Findings 21</p> <p>2.2.2.2 Design of First-generation AFPS 21</p> <p>2.2.2.3 Characterization of First-generation AFPS 23</p> <p>2.2.3 Second-generation Automated Fast Flow Peptide Synthesis 24</p> <p>2.2.3.1 Key Findings 24</p> <p>2.2.3.2 Design of Second-generation AFPS 24</p> <p>2.2.3.3 Characterization and Use of Second-generation AFPS 26</p> <p>2.2.4 Third-generation Automated Fast Flow Peptide Synthesis 32</p> <p>2.2.4.1 Key Findings 32</p> <p>2.2.4.2 Design of Third-generation AFPS 34</p> <p>2.2.4.3 Characterization of Third-generation AFPS 39</p> <p>2.2.4.4 Reagent Stability Study 43</p> <p>2.2.5 Fourth-generation Automated Fast Flow Peptide Synthesis 45</p> <p>2.2.5.1 Key Findings 45</p> <p>2.2.5.2 Effect of Solvent on Fast Flow Synthesis 45</p> <p>2.2.5.3 Design and Characterization of Fourth-generation AFPS 45</p> <p>2.3 Conclusions 49</p> <p>Acknowledgments 53</p> <p>References 53</p> <p><b>3</b> <b><i>N,S</i></b><b>- and </b><b><i>N,Se</i></b><b>-Acyl Transfer Devices in Protein Synthesis 59</b><br /><i>Vincent Diemer, Jennifer Bouchenna, Florent Kerdraon, Vangelis Agouridas, and Oleg Melnyk</i></p> <p>3.1 Introduction 59</p> <p>3.2 <i>N,S- </i>and <i>N,Se-</i>Acyl Transfer Devices: General Presentation, Reactivity and Statistical Overview of Their Utilization 61</p> <p>3.2.1 General Presentation of <i>N,S</i>- and <i>N,Se</i>-Acyl Transfer Devices 61</p> <p>3.2.2 Relative Reactivity of <i>N,S</i>- and <i>N,Se</i>-Acyl Transfer Devices 63</p> <p>3.2.3 A Statistical Overview of the Synthetic Use of <i>N,S</i>- and <i>N,Se-</i>Acyl Transfer Devices for Protein Total Chemical Synthesis 64</p> <p>3.3 Preparation of SEA/SeEA<sup>off</sup> and SEAlide Peptides 68</p> <p>3.3.1 Preparation of SEA and SeEA Peptides 68</p> <p>3.3.2 Preparation of SEAlide Peptides 70</p> <p>3.4 Redox-controlled Assembly of Biotinylated NK1 Domain of the Hepatocyte Growth Factor (HGF) Using SEA and SeEA Chemistries 71</p> <p>3.5 The Total Chemical Synthesis of GM2-AP Using SEAlide-based Chemistry 75</p> <p>3.6 Conclusion 79</p> <p>References 80</p> <p><b>4 Chemical Synthesis of Proteins Through Native Chemical Ligation of Peptide Hydrazides 87</b><br /><i>Chao Zuo, Xiaodan Tan, Xianglong Tan, and Lei Liu</i></p> <p>4.1 Introduction 87</p> <p>4.2 Development of Peptide Hydrazide-based Native Chemical Ligation 88</p> <p>4.2.1 Conversion of Peptide Hydrazide to Peptide Azide 88</p> <p>4.2.2 Acyl Azide-based Solid-phase Peptide Synthesis 88</p> <p>4.2.3 Acyl Azide-based Solution-phase Peptide Synthesis 89</p> <p>4.2.4 The Transesterification of Acyl Azide 90</p> <p>4.2.5 Development of Peptide Hydrazide-based Native Chemical Ligation 90</p> <p>4.3 Optimization of Peptide Hydrazide-based Native Chemical Ligation 91</p> <p>4.3.1 Preparation of Peptide Hydrazides 91</p> <p>4.3.1.1 2-Cl-Trt-Cl Resin 91</p> <p>4.3.1.2 Peptide Hydrazides from Expressed Proteins 92</p> <p>4.3.1.3 Sortase-mediated Hydrazide Generation 93</p> <p>4.3.2 Activation Methods of Peptide Hydrazide 94</p> <p>4.3.2.1 Knorr Pyrazole Synthesis 94</p> <p>4.3.2.2 Activation in TFA 94</p> <p>4.3.3 Ligation Sites of Peptide Hydrazide 95</p> <p>4.3.4 Multiple Fragment Ligation Based on Peptide Hydrazide 96</p> <p>4.3.4.1 N-to-C Sequential Ligation 96</p> <p>4.3.4.2 Convergent Ligation 96</p> <p>4.3.4.3 One-pot Ligation 96</p> <p>4.4 Application of Peptide Hydrazide-based Native Chemical Ligation 99</p> <p>4.4.1 Peptide Drugs and Diagnostic Tools 99</p> <p>4.4.1.1 Peptide Hydrazides for Cyclic Peptide Synthesis 99</p> <p>4.4.1.2 Screening for D Peptide Inhibitors Targeting PD-L1 99</p> <p>4.4.1.3 Chemical Synthesis of DCAF for Targeted Antibody Blocking 101</p> <p>4.4.1.4 Peptide Toxins 101</p> <p>4.4.2 Synthesis and Application of Two-photon Activatable Chemokine CCL5 102</p> <p>4.4.3 Proteins with Posttranslational Modification 103</p> <p>4.4.3.1 The Synthesis of Glycosylation-modified Full-length IL-6 103</p> <p>4.4.3.2 The Chemical Synthesis of EPO 105</p> <p>4.4.3.3 Chemical Synthesis of Homogeneous Phosphorylated p62 105</p> <p>4.4.3.4 Chemical Synthesis of K19, K48 Bi-acetylated Atg3 Protein 105</p> <p>4.4.4 Ubiquitin Chains 108</p> <p>4.4.4.1 Synthesis of K27-linked Ubiquitin Chains 108</p> <p>4.4.4.2 Synthesis of Atypical Ubiquitin Chains by Using an Isopeptide-linked Ub Isomer 109</p> <p>4.4.4.3 Synthesis of Atypical Ubiquitin Chains Using an Isopeptide-linked Ub Isomer 109</p> <p>4.4.5 Modified Nucleosomes 110</p> <p>4.4.5.1 Synthesis of DNA-barcoded Modified Nucleosome Library 110</p> <p>4.4.5.2 Synthesis of Modified Histone Analogs with a Cysteine Aminoethylation-assisted Chemical Ubiquitination Strategy 111</p> <p>4.4.5.3 Synthesis of Ubiquitylated Histones for Examination of the Deubiquitination Specificity of USP51 111</p> <p>4.4.6 Membrane Proteins 112</p> <p>4.4.7 Mirror-image Biological Systems 112</p> <p>4.5 Summary and Outlook 113</p> <p>References 114</p> <p><b>5 Expanding Native Chemical Ligation Methodology with Synthetic Amino Acid Derivatives 119</b><br /><i>Emma E. Watson, Lara R. Malins, and Richard J. Payne</i></p> <p>5.1 Native Chemical Ligation 120</p> <p>5.2 Desulfurization Chemistries 120</p> <p>5.3 Aspartic Acid (Asp, D) 122</p> <p>5.4 Glutamic Acid (Glu, E) 124</p> <p>5.5 Phenylalanine (Phe, F) 125</p> <p>5.6 Isoleucine (Ile, I) 127</p> <p>5.7 Lysine (Lys, K) 130</p> <p>5.8 Leucine (Leu, L) 133</p> <p>5.9 Asparagine (Asn, N) 135</p> <p>5.10 Proline (Pro, P) 138</p> <p>5.11 Glutamine (Gln, Q) 139</p> <p>5.12 Arginine (Arg, R) 139</p> <p>5.13 Threonine (Thr, T) 140</p> <p>5.14 Valine (Val, V) 142</p> <p>5.15 Tryptophan (Trp,W) 144</p> <p>5.16 Application of Selenocysteine (Sec) to Ligation Chemistry 146</p> <p>5.17 Aspartic Acid (Asp, D) 147</p> <p>5.18 Glutamic Acid (Glu, E) 148</p> <p>5.19 Phenylalanine (Phe, F) 149</p> <p>5.20 Leucine (Leu, L) 151</p> <p>5.21 Proline (Pro, P) 151</p> <p>5.22 Serine (Ser, S) 153</p> <p>References 155</p> <p><b>6 Peptide Ligations at Sterically Demanding Sites 161</b><br /><i>Yinglu Wang and Suwei Dong</i></p> <p>6.1 Introduction 161</p> <p>6.2 Ligations Using Thioesters 162</p> <p>6.2.1 Exogenous Additive-promoted Ligations 162</p> <p>6.2.2 Ligations Using Reactive Thioesters 167</p> <p>6.2.3 Internal Activation Strategy in Peptide Ligations 169</p> <p>6.3 Ligations Using Oxo-esters 170</p> <p>6.4 Peptide Ligations Based on Selenoesters 170</p> <p>6.5 Microfluidics-promoted NCL 175</p> <p>6.6 Representative Applications in Protein Synthesis 178</p> <p>6.7 Summary and Outlook 181</p> <p>References 181</p> <p><b>7 Controlling Segment Solubility in Large Protein Synthesis 185</b><br /><i>Riley J. Giesler, James M. Fulcher, Michael T. Jacobsen, and Michael S. Kay</i></p> <p>7.1 Solvent Manipulation 185</p> <p>7.2 Isoacyl Strategy 187</p> <p>7.3 Semipermanent Solubilizing Tags 191</p> <p>7.3.1 N- or C-Terminal Solubilizing “Tails” 192</p> <p>7.3.2 Reversible Backbone Modifications as Solubilizing Tags 194</p> <p>7.3.3 Building Block Solubilizing Tags 195</p> <p>7.3.4 Extendable Side-chain-based Solubilizing Tags 195</p> <p>References 198</p> <p><b>8 Toward HPLC-free Total Chemical Synthesis of Proteins 211</b><br /><i>Phuc Ung and Oliver Seitz</i></p> <p>8.1 Introduction 211</p> <p>8.1.1 Capture and Release Purification 212</p> <p>8.1.2 Solid-phase Chemical Ligations (SPCL) 212</p> <p>8.2 Synthesis of Peptide Segments for Native Chemical Ligation 213</p> <p>8.2.1 HPLC-free Preparation of N-terminal Peptide Segments for NCL 213</p> <p>8.2.2 HPLC-free Preparation of C-terminal Peptide Segments for NCL 217</p> <p>8.3 Synthesis of Proteins Using the His<sub>6</sub> Tag 220</p> <p>8.3.1 Reversible His<sub>6</sub>-based Capture Tags 220</p> <p>8.3.2 His<sub>6</sub>-based Immobilization for <i>C</i>-to-<i>N </i>Assembly of Crambin 221</p> <p>8.3.3 His<sub>6</sub>-based Immobilization for Assembly of Proteins on Microtiter Plates 222</p> <p>8.3.4 His<sub>6</sub> and Hydrazide Tags for Sequential <i>N</i>-to-<i>C </i>Capture and Release 225</p> <p>8.4 Synthesis of Proteins via Oxime Formation 227</p> <p>8.4.1 Reversible Oxime-based Capture Tags 227</p> <p>8.4.2 Oxime-based Immobilization for <i>N</i>-to-<i>C </i>Solid-phase Chemical Ligations 227</p> <p>8.4.3 Oxime-based Immobilization for <i>C</i>-to-<i>N </i>Solid-phase Chemical Ligations 233</p> <p>8.4.4 Oxime-based <i>C</i>-to-<i>N </i>Solid-phase Chemical Ligations 237</p> <p>8.5 Synthesis of Proteins via Hydrazone Formation 238</p> <p>8.5.1 Reversible Hydrazone-based Capture Tags 238</p> <p>8.5.2 Hydrazone-based Immobilization for Assembly of Proteins on Microtiter Plates 239</p> <p>8.6 Synthesis of Proteins Using Click Chemistry 242</p> <p>8.6.1 Click-based Immobilization for <i>N</i>-to-<i>C </i>Solid-phase Peptide Ligations Using a Protected Alkyne 242</p> <p>8.6.2 Click-based Immobilization for <i>N</i>-to-<i>C </i>Solid-phase Peptide Ligations Using a Sea Group 243</p> <p>8.7 Synthesis of Proteins Using the KAHA Ligation 244</p> <p>8.7.1 The KAHA Ligation 244</p> <p>8.7.2 HPLC-free Synthesis of Proteins Using the KAHA Ligation 245</p> <p>8.8 Synthesis of Proteins Using Photocleavable Tags 246</p> <p>8.8.1 Synthesis of Proteins Using a Photocleavable Biotin-based Purification Tag 246</p> <p>8.8.2 Synthesis of Proteins Using a Photocleavable His6-based Purification Tag 247</p> <p>8.9 Conclusion 249</p> <p>References 251</p> <p><b>9 Solid-phase Chemical Ligation 259</b><br /><i>Skander A. Abboud, Agnès F. Delmas, and Vincent Aucagne</i></p> <p>9.1 Introduction 259</p> <p>9.1.1 The Promises of Solid Phase Chemical Ligation (SPCL) 259</p> <p>9.1.2 Chemical Ligation Reactions Used for SPCL 260</p> <p>9.1.3 Key Requirements for a SPCL Strategy 261</p> <p>9.2 SPCL in the <i>C</i>-to-<i>N </i>Direction 262</p> <p>9.2.1 Temporary Masking Groups to Enable Iterative Ligations 262</p> <p>9.2.2 Linkers for <i>C</i>-to-<i>N </i>SPCL 264</p> <p>9.2.2.1 Use of Same Linker and Solid Support for SPPS and SPCL 265</p> <p>9.2.2.2 Re-immobilization of the C-Terminal Segment 266</p> <p>9.3 SPCL in the <i>N</i>-to-<i>C </i>Direction 268</p> <p>9.3.1 Temporary Masking Groups to Enable Iterative Ligations 268</p> <p>9.3.2 Linkers for <i>N</i>-to-<i>C </i>SPCL 270</p> <p>9.3.3 Case Study 272</p> <p>9.3.4 SPCL with Concomitant Purifications 274</p> <p>9.4 Post-Ligation Solid-Supported Transformations 274</p> <p>9.4.1 Chemical Transformations 274</p> <p>9.4.2 Biochemical Transformations 275</p> <p>9.5 Solid Support 275</p> <p>9.6 Conclusion and Perspectives 278</p> <p>Acknowledgment 278</p> <p>9.A Appendix 278</p> <p>References 280</p> <p><b>10 Ser/Thr Ligation for Protein Chemical Synthesis 285</b><br /><i>Carina Hey Pui Cheung and Xuechen Li</i></p> <p>10.1 Serine/Threonine Ligation 287</p> <p>10.2 Epimerization Issue 289</p> <p>10.3 Other Aryl Aldehyde Esters 289</p> <p>10.4 Preparation of Peptide Salicylaldehyde Esters 289</p> <p>10.5 Scope and Limitations 294</p> <p>10.6 Strategies of Ser/Thr Ligation for Protein Chemical Synthesis 294</p> <p>10.7 <i>C</i>-to-<i>N </i>Ser/Thr Ligation 294</p> <p>10.8 <i>N</i>-to-<i>C </i>Ser/Thr Ligation 296</p> <p>10.9 One-pot Ser/Thr Ligation and NCL 296</p> <p>10.10 Bioconjugation 296</p> <p>10.11 Solubility Issues 298</p> <p>10.12 Extension of Ser/Thr Ligation 298</p> <p>10.13 Conclusion 302</p> <p>References 303</p> <p><b>11 Protein Semisynthesis 307</b><br /><i>Nam Chu and Philip A. Cole</i></p> <p>11.1 Background 307</p> <p>11.2 Expressed Protein Ligation (EPL) 308</p> <p>11.2.1 Method Development 308</p> <p>11.2.2 Applications of EPL for Studying Protein Posttranslational Modifications 309</p> <p>11.2.3 Site-specific Protein Labeling with <i>N</i>-Hydroxysuccinimide Esters 311</p> <p>11.3 Cysteine Modifications 311</p> <p>11.3.1 Dehydroalanine Generation and Applications in Semisynthesis 312</p> <p>11.3.2 Cysteine Alkylation-related Methods to Introduce Lys Mimics 313</p> <p>11.4 Enzyme-catalyzed Protein/Peptide Ligations 314</p> <p>11.4.1 Sortase 314</p> <p>11.4.2 Butelase-1 316</p> <p>11.4.3 Subtiligase 317</p> <p>11.4.4 Trypsiligase 318</p> <p>11.5 Enzyme-catalyzed Expressed Protein Ligation 318</p> <p>11.6 Summary and Outlook 319</p> <p>Acknowledgments 320</p> <p>References 320</p> <p><b>12 Bio-orthogonal Imine Chemistry in Chemical Protein Synthesis 327</b><br /><i>Stijn M. Agten, Ingrid Dijkgraaf, Stan H. E. van der Beelen, and Tilman M. Hackeng</i></p> <p>12.1 Introduction 327</p> <p>12.2 Carbonyl Functionalization 328</p> <p>12.3 Aminooxy, Hydrazine, and Hydrazide Functionalization 335</p> <p>12.4 Oxime Ligation 337</p> <p>12.5 Hydrazone Ligation 342</p> <p>12.6 Pictet–Spengler Reaction 344</p> <p>12.7 Catalysis of Oxime and Hydrazone Ligations 346</p> <p>References 348</p> <p><b>13 Deciphering Protein Folding Using Chemical Protein Synthesis 357</b><br /><i>Vladimir Torbeev</i></p> <p>13.1 Introduction 357</p> <p>13.2 Modification of Protein Backbone Amides 358</p> <p>13.3 Insertion of β-turn Mimetics 361</p> <p>13.4 Inversion of Chiral Centers in Protein Backbone and Side Chains 362</p> <p>13.5 Modulating <i>cis–trans </i>Proline Isomerization 366</p> <p>13.6 Steering Oxidative Protein Folding 368</p> <p>13.7 Covalent Tethering to Facilitate Folding of Designed Proteins 371</p> <p>13.8 Discovery of Previously Unknown Protein Folds 373</p> <p>13.9 Site-specific Labeling with Fluorophores 373</p> <p>13.10 Foldamers and Foldamer–Peptide Hybrids 375</p> <p>13.11 Conclusions and Outlook 377</p> <p>Acknowledgement 378</p> <p>References 378</p> <p><b>14 Chemical Synthesis of Ubiquitinated Proteins for Biochemical Studies 383</b><br /><i>Gandhesiri Satish, Ganga B. Vamisetti, and Ashraf Brik</i></p> <p>14.1 The Ubiquitin System 383</p> <p>14.2 Non-enzymatic Ubiquitination: Challenges and Opportunities 386</p> <p>14.2.1 Chemical Synthesis of Ub Building Blocks 387</p> <p>14.2.2 Isopeptide Ligation 387</p> <p>14.2.3 Total Chemical Synthesis of Tetra-Ub Chains 390</p> <p>14.3 Synthesis and Semisynthesis of Ubiquitinated Proteins 393</p> <p>14.3.1 Monoubiquitinated Proteins 393</p> <p>14.3.2 Tetra-ubiquitinated Proteins 395</p> <p>14.3.3 Modification of Expressed Proteins with Tetra-Ub 400</p> <p>14.4 Synthesis of Unique Ub Conjugates to Study and Target DUBs 401</p> <p>14.5 Activity-based Probes 403</p> <p>14.6 Perspective 405</p> <p>List of Abbreviations 406</p> <p>References 407</p> <p><b>15 Glycoprotein Synthesis 411</b><br /><i>Chaitra Chandrashekar, Kento Iritani, Tatsuya Moriguchi, and Yasuhiro Kajihara</i></p> <p>15.1 Introduction 411</p> <p>15.2 Total Chemical Synthesis of Glycoproteins 411</p> <p>15.3 Semisynthesis of Glycoproteins 413</p> <p>15.4 Chemoenzymatic Synthesis 413</p> <p>15.5 α-Synuclein 414</p> <p>15.6 Hirudin P6 415</p> <p>15.7 Saposin D 416</p> <p>15.8 Interleukin 2 417</p> <p>15.9 Interleukin 25 417</p> <p>15.10 Mucin 1 419</p> <p>15.11 Crambin 421</p> <p>15.12 Tau Protein 422</p> <p>15.13 Chemical Domain of Fractalkine 423</p> <p>15.14 CCL1 424</p> <p>15.15 Interleukin 6 424</p> <p>15.16 Interleukin 8 425</p> <p>15.17 Erythropoietin 426</p> <p>15.18 Trastuzumab 430</p> <p>15.19 Antifreeze Glycoprotein 432</p> <p>15.20 Conclusion 434</p> <p>References 434</p> <p><b>16 Chemical Synthesis of Membrane Proteins 437</b><br /><i>Alanca Schmid and Christian F.W. Becker</i></p> <p>16.1 Introduction 437</p> <p>16.2 Solid Phase Synthesis of TM Peptides 438</p> <p>16.3 Purification and Handling Strategies of TM Peptides 442</p> <p>16.4 Solubility Tags 443</p> <p>16.4.1 Terminal Tags 443</p> <p>16.4.2 Side Chain Tags 445</p> <p>16.5 Removable Solubilizing Backbone Tags 445</p> <p>16.6 Chemical Synthesis of Membrane Proteins 449</p> <p>16.6.1 Proteins With 1 TM Domain 449</p> <p>16.6.2 Proteins with 2 TM Domains 450</p> <p>16.6.3 Proteins with 3 and More TM Domains 454</p> <p>16.7 Outlook 456</p> <p>References 457</p> <p><b>17 Chemical Synthesis of Selenoproteins 463</b><br /><i>Rebecca N. Dardashti, Reem Ghadir, Hiba Ghareeb, Orit Weil-Ktorza, and Norman Metanis</i></p> <p>17.1 What are Selenoproteins? 463</p> <p>17.2 Expression of Selenoproteins 466</p> <p>17.3 Sec as a Reactive Handle 469</p> <p>17.4 Synthesis and Semisynthesis of Natural Selenoproteins 473</p> <p>17.5 Selenium as a Tool for Protein Folding 475</p> <p>17.6 Conclusions 478</p> <p>References 478</p> <p><b>18 Histone Synthesis 489</b><br /><i>Champak Chatterjee</i></p> <p>18.1 The Histones and Their Chemical Modifications 489</p> <p>18.1.1 Histone Proteins 489</p> <p>18.1.2 Histone Posttranslational Modifications 490</p> <p>18.2 Chemical Ligation for Histone Synthesis 492</p> <p>18.2.1 Native Chemical Ligation 492</p> <p>18.2.2 Expanding the Scope of Native Chemical LigationWith Inteins 494</p> <p>18.3 Histone Octamer and Nucleosome Core Particle Assembly 494</p> <p>18.4 Studying the Histone CodeWith Synthetic Histones 496</p> <p>18.4.1 Synthesis of Histones Modified by Smaller Functional Groups 497</p> <p>18.4.1.1 Histone Phosphorylation 497</p> <p>18.4.1.2 Histone Acetylation 499</p> <p>18.4.1.3 Histone Methylation 502</p> <p>18.4.2 Synthesis of Sumoylated Histones 505</p> <p>18.5 Conclusions 506</p> <p>Acknowledgments 506</p> <p>References 506</p> <p><b>19 Application of Chemical Synthesis to Engineer Protein Backbone Connectivity 515</b><br /><i>Chino C. Cabalteja and W. Seth Horne</i></p> <p>19.1 Introduction 515</p> <p>19.2 Backbone Engineering to Facilitate Synthesis 516</p> <p>19.3 Backbone Engineering to Explore the Consequences of Chirality 517</p> <p>19.4 Backbone Engineering to Understand and Control Folding 520</p> <p>19.5 Backbone Engineering to Create Protein Mimetics 522</p> <p>19.6 Conclusions 525</p> <p>References 526</p> <p><b>20 Beyond Phosphate Esters: Synthesis of Unusually Phosphorylated Peptides and Proteins for Proteomic Research 533</b><br /><i>Anett Hauser, Christian E. Stieger, and Christian P. R. Hackenberger</i></p> <p>20.1 Introduction 533</p> <p>20.2 General Methods for the Incorporation of Hydroxy-phosphorylated Amino Acids into Peptides and Proteins 534</p> <p>20.3 Incorporation of Other Phosphorylated Nucleophilic Amino Acids into Peptides and Proteins 537</p> <p>20.3.1 Phosphoarginine (pArg) 537</p> <p>20.3.2 Phosphohistidine (pHis) 538</p> <p>20.3.3 Phospholysine (pLys) 539</p> <p>20.3.4 Phosphocysteine (pCys) 539</p> <p>20.3.5 Pyrophosphorylation of Serine and Threonine (ppSer, ppThr) 541</p> <p>20.4 Development of Phospho-analogues as Mimics for Endogenous Phospho-Amino Acids 541</p> <p>20.4.1 Analogues of Phosphoserine, Phosphothreonine, and Phosphotyrosine 541</p> <p>20.4.2 Stable Analogues of Phosphoaspartate and Phosphoglutamate 543</p> <p>20.4.3 Stable Analogues of Phosphoarginine 544</p> <p>20.4.4 Stable Analogues of Phosphohistidine 545</p> <p>20.4.5 Stable Analogues of Pyrophosphorylated Serine 547</p> <p>20.5 Conclusion 547</p> <p>References 547</p> <p><b>21 Cyclic Peptides via Ligation Methods 553</b><br /><i>Tristan J. Tyler and David J. Craik</i></p> <p>21.1 Introduction 553</p> <p>21.2 Cyclic Peptide Synthesis 554</p> <p>21.3 Orbitides 557</p> <p>21.4 Paws-derived Peptides(PDPs) 559</p> <p>21.5 Cyclic Conotoxins 561</p> <p>21.6 θ-Defensins 563</p> <p>21.7 Cyclotides 563</p> <p>21.8 Outlook 568</p> <p>Acknowledgements 568</p> <p>Funding 568</p> <p>References 569</p> <p>Index 579</p>
<p><b><i>Ashraf Brik, PhD</i>,</b> <i>is a Professor of Chemistry at the Schulich Faculty of Chemistry in the Technion-Israel Institute of Technology.</i> <p><b><i>Philip E. Dawson, PhD</i>,</b> <i>is a Professor of Chemistry at Scripps Research, CA, where he is also the Dean of Graduate and Postdoctoral Studies.</i> <p><b><i>Lei Liu, PhD</i>,</b> <i>is a Professor of Chemistry at Tsinghua University.</i>
<p><b>How to synthesize native and modified proteins in the test tube</b> <p>With contributions from a panel of experts representing a range of disciplines, <i>Total Chemical Synthesis of Proteins</i> presents a carefully curated collection of synthetic approaches and strategies for the total synthesis of native and modified proteins. <p>Comprehensive in scope, this important reference explores the main chemoselective ligation methods for assembling unprotected peptide segments, including native chemical ligation (NCL). It includes information on synthetic strategies for the complex polypeptides that constitute glycoproteins, sulfoproteins, and membrane proteins, as well as their characterization. In addition, important areas of application for total protein synthesis are detailed, such as protein crystallography, protein engineering, and biomedical research. The authors also discuss the synthetic challenges that remain to be addressed. This unmatched resource:<BR> <ul> <li>Contains valuable insights from the pioneers in the field of chemical protein synthesis</li> <li>Presents proven synthetic approaches for a range of protein families</li> <li>Explores key applications of precisely controlled protein synthesis, including novel diagnostics and therapeutics</li> </ul> <p>Written for organic chemists, biochemists, biotechnologists, and molecular biologists, <i>Total Chemical Synthesis of Proteins</i> provides key knowledge for everyone venturing into the burgeoning field of protein design and synthetic biology.

Diese Produkte könnten Sie auch interessieren:

Oxidation of Alcohols to Aldehydes and Ketones
Oxidation of Alcohols to Aldehydes and Ketones
von: Gabriel Tojo, Marcos I. Fernandez
PDF ebook
96,29 €
Metal-Catalysed Reactions of Hydrocarbons
Metal-Catalysed Reactions of Hydrocarbons
von: Geoffrey C. Bond
PDF ebook
96,29 €